180
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Integrating network pharmacology, molecular docking and simulation approaches with machine learning reveals the multi-target pharmacological mechanism of Berberis integerrima against diabetic nephropathy

, , , , , & show all
Received 26 Jun 2023, Accepted 02 Sep 2023, Published online: 20 Feb 2024

References

  • Abd El-Wahab, A. E., Ghareeb, D. A., Sarhan, E. E. M., Abu-Serie, M. M., & El Demellawy, M. A. (2013). In vitro biological assessment of Berberis vulgaris and its active constituent, berberine: Antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects. BMC Complementary and Alternative Medicine, 13(1), 218. https://doi.org/10.1186/1472-6882-13-218
  • Ahmad, J. (2015). Management of diabetic nephropathy: Recent progress and future perspective. Diabetes & Metabolic Syndrome, 9(4), 343–358. https://doi.org/10.1016/j.dsx.2015.02.008
  • Alemardan, A., Asadi, W., Rezaei, M., Tabrizi, L., & Mohammadi, S. (2013). Cultivation of Iranian seedless barberry (Berberis integerrima ‘Bidaneh’): A medicinal shrub. Industrial Crops and Products, 50, 276–287. https://doi.org/10.1016/j.indcrop.2013.07.061
  • Anand, U., Jacobo-Herrera, N., Altemimi, A., & Lakhssassi, N. (2019). A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites, 9(11), 258. https://doi.org/10.3390/metabo9110258
  • Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England), 31(2), 166–169. https://doi.org/10.1093/bioinformatics/btu638
  • Ashraf, H., Heidari, R., & Nejati, V. (2014). Antihyperglycemic and antihyperlipidemic effects of fruit aqueous extract of Berberis integerrima Bge. in streptozotocin-induced diabetic rats. Iranian Journal of Pharmaceutical Research: IJPR, 13(4), 1313.
  • Ashraf, H., Heidari, R., Nejati, V., & Ilkhanipoor, M. (2013). Aqueous extract of Berberis integerrima root improves renal dysfunction in streptozotocin induced diabetic rats. Avicenna Journal of Phytomedicine, 3(1), 82.
  • Barrett, T., Suzek, T. O., Troup, D. B., Wilhite, S. E., Ngau, W.-C., Ledoux, P., Rudnev, D., Lash, A. E., Fujibuchi, W., & Edgar, R. (2005). NCBI GEO: Mining millions of expression profiles—database and tools. Nucleic Acids Research, 33(Database issue), D562–D566. https://doi.org/10.1093/nar/gki022
  • Batool, S., Javed, M. R., Aslam, S., Noor, F., Javed, H. M. F., Seemab, R., Rehman, A., Aslam, M. F., Paray, B. A., & Gulnaz, A. (2022). Network pharmacology and bioinformatics approach reveals the multi-target pharmacological mechanism of Fumaria indica in the treatment of liver cancer. Pharmaceuticals, 15(6), 654. https://doi.org/10.3390/ph15060654
  • Borgohain, M. P., Lahkar, M., Ahmed, S., Chowdhury, L., Kumar, S., Pant, R., & Choubey, A. (2017). Small molecule inhibiting nuclear factor‐kB ameliorates oxidative stress and suppresses renal inflammation in early stage of alloxan‐induced diabetic nephropathy in rat. Basic & Clinical Pharmacology & Toxicology, 120(5), 442–449. https://doi.org/10.1111/bcpt.12718
  • Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the 5th Annual Workshop on Computational Learning Theory. https://doi.org/10.1145/130385.130401
  • Brahmachari, G. (2012). Natural products in drug discovery: Impacts and opportunities—An assessment. In Bioactive natural products: Opportunities and challenges in medicinal chemistry (pp. 1–199).
  • Bussi, G., & Parrinello, M. (2007). Accurate sampling using Langevin dynamics. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 75(5), 056707. https://doi.org/10.1103/PhysRevE.75.056707
  • Chander, V., Aswal, J., Dobhal, R., & Uniyal, D. (2017). A review on pharmacological potential of berberine; An active component of Himalayan Berberis aristata. The Journal of Phytopharmacology, 6(1), 53–65. https://doi.org/10.31254/phyto.2017.6108
  • Chen, J., Peng, H., Chen, C., Wang, Y., Sang, T., Cai, Z., Zhao, Q., Chen, S., Lin, X., Eling, T., & Wang, X. (2022). NAG-1/GDF15 inhibits diabetic nephropathy via inhibiting AGE/RAGE-mediated inflammation signaling pathways in C57BL/6 mice and HK-2 cells. Life Sciences, 311, 121142. https://doi.org/10.1016/j.lfs.2022.121142
  • Chien, H.-Y., Chen, C.-Y., Chiu, Y.-H., Lin, Y.-C., & Li, W.-C. (2016). Differential microRNA profiles predict diabetic nephropathy progression in Taiwan. International Journal of Medical Sciences, 13(6), 457–465. https://doi.org/10.7150/ijms.15548
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13.
  • Dallakyan, S., Olson, A.J. (2015). Small-Molecule Library Screening by Docking with PyRx. In Hempel, J., Williams, C., Hong, C. (Eds.), Chemical Biology. Methods in Molecular Biology (Vol. 1263). New York, NY: Humana Press. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., & Lempicki, R. A. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology, 4(9), 1–11.
  • Derosa, G., & Maffioli, P. (2012). Efficacy and safety profile evaluation of acarbose alone and in association with other antidiabetic drugs: A systematic review. Clinical Therapeutics, 34(6), 1221–1236. https://doi.org/10.1016/j.clinthera.2012.04.012
  • El-Beltagi, H. S., Mohamed, H. I., Safwat, G., Gamal, M., & Megahed, B. M. H. (2019). Chemical composition and biological activity of Physalis peruviana L. Gesunde Pflanzen, 71(2), 113–122. https://doi.org/10.1007/s10343-019-00456-8
  • Emamat, H., Zahedmehr, A., Asadian, S., & Nasrollahzadeh, J. (2022). The effect of purple-black barberry (Berberis integerrima) on blood pressure in subjects with cardiovascular risk factors: A randomized controlled trial. Journal of Ethnopharmacology, 289, 115097. https://doi.org/10.1016/j.jep.2022.115097
  • Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014). SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research, 42(Web Server issue), W32–W38. https://doi.org/10.1093/nar/gku293
  • Gheith, O., Farouk, N., Nampoory, N., Halim, M. A., & Al-Otaibi, T. (2016). Diabetic kidney disease: World wide difference of prevalence and risk factors. Journal of Nephropharmacology, 5(1), 49.
  • Gocek, E., Moulas, A. N., & Studzinski, G. P. (2014). Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells. Critical Reviews in Clinical Laboratory Sciences, 51(3), 125–137. https://doi.org/10.3109/10408363.2013.874403
  • Goddard, T. D., Huang, C. C., Meng, E. C., Pettersen, E. F., Couch, G. S., Morris, J. H., & Ferrin, T. E. (2018). UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Science: A Publication of the Protein Society, 27(1), 14–25. https://doi.org/10.1002/pro.3235
  • Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd International Conference on Document Analysis and Recognition. IEEE.
  • John, S. (2016). Complication in diabetic nephropathy. Diabetes & Metabolic Syndrome, 10(4), 247–249. https://doi.org/10.1016/j.dsx.2016.06.005
  • Koeberle, A., & Werz, O. (2014). Multi-target approach for natural products in inflammation. Drug Discovery Today, 19(12), 1871–1882. https://doi.org/10.1016/j.drudis.2014.08.006
  • Koya, D., & King, G. L. (1998). Protein kinase C activation and the development of diabetic complications. Diabetes, 47(6), 859–866. https://doi.org/10.2337/diabetes.47.6.859
  • Kräutler, V., van Gunsteren, W. F., & Hünenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22(5), 501–508. https://doi.org/10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
  • Kuhn, M., von Mering, C., Campillos, M., Jensen, L. J., & Bork, P. (2007). STITCH: Interaction networks of chemicals and proteins. Nucleic Acids Research, 36(Database issue), D684–D688. https://doi.org/10.1093/nar/gkm795
  • Lai, X., Wang, X., Hu, Y., Su, S., Li, W., & Li, S. (2020). Network pharmacology and traditional medicine. Frontiers in Pharmacology, 11, 1194. https://doi.org/10.3389/fphar.2020.01194
  • Langham, R. G., Kelly, D. J., Gow, R. M., Zhang, Y., Cox, A. J., Qi, W., Thai, K., Pollock, C. A., Christensen, P. K., Parving, H.-H., & Gilbert, R. E. (2008). Increased renal gene transcription of protein kinase C-β in human diabetic nephropathy: Relationship to long-term glycaemic control. Diabetologia, 51(4), 668–674. https://doi.org/10.1007/s00125-008-0927-x
  • Lin, J., Cheng, A., Cheng, K., Deng, Q., Zhang, S., Lan, Z., Wang, W., & Chen, J. (2020). New insights into the mechanisms of pyroptosis and implications for diabetic kidney disease. International Journal of Molecular Sciences, 21(19), 7057. https://doi.org/10.3390/ijms21197057
  • Love, M., Anders, S., & Huber, W. (2014). Differential analysis of count data–the DESeq2 package. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8
  • Lu, X., Li, L., Suo, L., Huang, P., Wang, H., Han, S., & Cao, M. (2022). Single-cell RNA sequencing profiles identify important pathophysiologic factors in the progression of diabetic nephropathy. Frontiers in Cell and Developmental Biology, 10, 798316. https://doi.org/10.3389/fcell.2022.798316
  • Maezawa, Y., Takemoto, M., & Yokote, K. (2015). Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes. Journal of Diabetes Investigation, 6(1), 3–15. https://doi.org/10.1111/jdi.12255
  • Meier, M., Menne, J., & Haller, H. (2009). Targeting the protein kinase C family in the diabetic kidney: Lessons from analysis of mutant mice. Diabetologia, 52(5), 765–775.
  • Mering, C. (2003). STRING: A database of predicted functional associations between proteins. Nucleic Acids Research, 31(1), 258–261. https://doi.org/10.1093/nar/gkg034
  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Scientific Reports, 8(1), 1–17.
  • Nakamura, K., Shimura, N., Otabe, Y., Hirai-Morita, A., Nakamura, Y., Ono, N., Ul-Amin, M. A., & Kanaya, S. (2013). KNApSAcK-3D: A three-dimensional structure database of plant metabolites. Plant & Cell Physiology, 54(2), e4-e4. https://doi.org/10.1093/pcp/pcs186
  • Ni, W. J., Tang, L. Q., & Wei, W. (2015). Research progress in signalling pathway in diabetic nephropathy. Diabetes/Metabolism Research and Reviews, 31(3), 221–233. https://doi.org/10.1002/dmrr.2568
  • Oates, P. J. (2008). Aldose reductase, still a compelling target for diabetic neuropathy. Current Drug Targets, 9(1), 14–36. https://doi.org/10.2174/138945008783431781
  • Pandey, G., Khatoon, S., Pandey, M., & Rawat, A. (2018). Altitudinal variation of berberine, total phenolics and flavonoid content in Thalictrum foliolosum and their correlation with antimicrobial and antioxidant activities. Journal of Ayurveda and Integrative Medicine, 9(3), 169–176. https://doi.org/10.1016/j.jaim.2017.02.010
  • Papadopoulou‐Marketou, N., Chrousos, G. P., & Kanaka‐Gantenbein, C. (2017). Diabetic nephropathy in type 1 diabetes: A review of early natural history, pathogenesis, and diagnosis. Diabetes/Metabolism Research and Reviews, 33(2), e2841. https://doi.org/10.1002/dmrr.2841
  • Park, S.-J., Li, C., & Chen, Y. M. (2021). Endoplasmic reticulum calcium homeostasis in kidney disease: Pathogenesis and therapeutic targets. The American Journal of Pathology, 191(2), 256–265. https://doi.org/10.1016/j.ajpath.2020.11.006
  • Rangan, G., Wang, Y., & Harris, D. (2009). NF-kappaB signalling in chronic kidney disease. Frontiers in Bioscience (Landmark Edition), 14(9), 3496–3522. https://doi.org/10.2741/3467
  • Rehman, A., Noor, F., Fatima, I., Qasim, M., & Liao, M. (2022). Identification of molecular mechanisms underlying the therapeutic effects of Celosia Cristata on immunoglobulin nephropathy. Computers in Biology and Medicine, 151(Pt A), 106290. https://doi.org/10.1016/j.compbiomed.2022.106290
  • Sabahi, Z., Farmani, F., Soltani, F., & Moein, M. (2018). DNA protection, antioxidant and xanthine oxidase inhibition activities of polyphenol-enriched fraction of Berberis integerrima Bunge fruits. Iranian Journal of Basic Medical Sciences, 21(4), 411.
  • Sada, K., Takano, T., Yanagi, S., & Yamamura, H. (2001). Structure and function of Syk protein-tyrosine kinase. Journal of Biochemistry, 130(2), 177–186. https://doi.org/10.1093/oxfordjournals.jbchem.a002970
  • Sagoo, M.K., Gnudi, L. (2020). Diabetic Nephropathy: An Overview. In Gnudi, L., Long, D. (Eds.), Diabetic Nephropathy. Methods in Molecular Biology (Vol. 2067). New York, NY: Humana. https://doi.org/10.1007/978-1-4939-9841-8_1
  • Salehi, B., Selamoglu, Z., Sener, B., Kilic, M., Kumar Jugran, A., de Tommasi, N., Sinisgalli, C., Milella, L., Rajkovic, J., Flaviana B Morais-Braga, M., F Bezerra, C., E Rocha, J., D M Coutinho, H., Oluwaseun Ademiluyi, A., Khan Shinwari, Z., Ahmad Jan, S., Erol, E., Ali, Z., Adrian Ostrander, E., … Cho, W. C. (2019). Berberis plants—drifting from farm to food applications, phytotherapy, and phytopharmacology. Foods (Basel, Switzerland), 8(10), 522. https://doi.org/10.3390/foods8100522
  • Salomon-Ferrer, R., Case, D., & Walker, R. (2013). An overview of the Amber biomolecular simulation package. WIREs Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Saxena, S., Mathur, A., & Kakkar, P. (2019). Critical role of mitochondrial dysfunction and impaired mitophagy in diabetic nephropathy. Journal of Cellular Physiology, 234(11), 19223–19236. https://doi.org/10.1002/jcp.28712
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
  • Shen, C.-Y., Lu, C.-H., Wu, C.-H., Li, K.-J., Kuo, Y.-M., Hsieh, S.-C., & Yu, C.-L. (2020). The development of maillard reaction, and advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling inhibitors as novel therapeutic strategies for patients with AGE-related diseases. Molecules, 25(23), 5591. https://doi.org/10.3390/molecules25235591
  • Sheng, J., Li, H., Dai, Q., Lu, C., Xu, M., Zhang, J., & Feng, J. (2018). NR4A1 promotes diabetic nephropathy by activating mff-mediated mitochondrial fission and suppressing parkin-mediated mitophagy. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 48(4), 1675–1693. https://doi.org/10.1159/000492292
  • Studio, D. J. A. (2008). Discovery Studio.
  • Tang, P. M.-K., Nikolic-Paterson, D. J., & Lan, H.-Y. (2019). Macrophages: Versatile players in renal inflammation and fibrosis. Nature Reviews. Nephrology, 15(3), 144–158. https://doi.org/10.1038/s41581-019-0110-2
  • Tang, S. C., & Yiu, W. H. (2020). Innate immunity in diabetic kidney disease. Nature Reviews Nephrology, 16(4), 206–222. https://doi.org/10.1038/s41581-019-0234-4
  • Thu, Y. M., & Richmond, A. (2010). NF-κB inducing kinase: A key regulator in the immune system and in cancer. Cytokine & Growth Factor Reviews, 21(4), 213–226. https://doi.org/10.1016/j.cytogfr.2010.06.002
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Trapnell, C., Pachter, L., & Salzberg, S. L. (2009). TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics (Oxford, England), 25(9), 1105–1111. https://doi.org/10.1093/bioinformatics/btp120
  • Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L., & Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562–578. https://doi.org/10.1038/nprot.2012.016
  • Vanisree, M. (2004). Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Botanical Bulletin of Academia Sinica, 45(1), 1–22.
  • Vijayakumar, T. M., Jayram, J., Meghana Cheekireddy, V., Himaja, D., Dharma Teja, Y., & Narayanasamy, D. (2017). Safety, efficacy, and bioavailability of fixed-dose combinations in type 2 diabetes mellitus: A systematic updated review. Current Therapeutic Research, Clinical and Experimental, 84, 4–9. https://doi.org/10.1016/j.curtheres.2017.01.005
  • Weiner, P. K., & Kollman, P. A. (1981). AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions. Journal of Computational Chemistry, 2(3), 287–303. https://doi.org/10.1002/jcc.540020311
  • Yamagishi, S., Nakamura, N., & Matsui, T. (2017). Glycation and cardiovascular disease in diabetes: A perspective on the concept of metabolic memory: 糖基化与糖尿病心血管疾病: 对代谢记忆概念的认识. Journal of Diabetes, 9(2), 141–148. https://doi.org/10.1111/1753-0407.12475
  • Yamamoto, Y., & Gaynor, R. B. (2004). IκB kinases: Key regulators of the NF-κB pathway. Trends in Biochemical Sciences, 29(2), 72–79. https://doi.org/10.1016/j.tibs.2003.12.003
  • Yuan, S., Chan, H. S., & Hu, Z. (2017). Using PyMOL as a platform for computational drug design. Wiley Interdisciplinary Reviews: Computational Molecular Science, 7(2), e1298.
  • Zhou, H., Yang, Z., Mu, L., & Shi, Y. (2022). Integrated analysis of multiple microarray studies to identify core gene-expression signatures involved in tubulointerstitial injury in diabetic nephropathy. BioMed Research International, 2022, 20. https://doi.org/10.1155/2022/9554658
  • Zhu, H., Chen, Y-M., Gong, W-K., Lai, J-B., Yao, B-B., Zhao, Z-J., Lu, Q-K., Ye, K., Ji, L-D., & Xu, J. (2022). Shared and specific biological signalling pathways for diabetic retinopathy, peripheral neuropathy and nephropathy by high-throughput sequencing analysis. Diabetes and Vascular Disease Research, 19(4), 147916412211229. https://doi.org/10.1177/14791641221122918
  • Zhu, M., Sun, X., Qi, X., Xia, L., & Wu, Y. (2020). Exosomes from high glucose-treated macrophages activate macrophages and induce inflammatory responses via NF-κB signaling pathway in vitro and in vivo. International Immunopharmacology, 84, 106551. https://doi.org/10.1016/j.intimp.2020.106551
  • Ziyadeh, F. N. (2004). Mediators of diabetic renal disease: The case for TGF-β as the major mediator. Journal of the American Society of Nephrology, 15(1_suppl), S55–S57. https://doi.org/10.1097/01.ASN.0000093460.24823.5B

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.