96
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Design, spectral characterization, quantum chemical investigation, biological activity of nano-sized transition metal complexes of tridentate 3-mercapto-4H-1,2,4-triazol-4-yl-aminomethylphenol Schiff base ligand

&
Received 25 Aug 2023, Accepted 23 Nov 2023, Published online: 22 Dec 2023

References

  • A Patil, S., P Hoagland, A., A Patil, S., & Bugarin, A. (2020). N-heterocyclic carbene-metal complexes as bio-organometallic antimicrobial and anticancer drugs, an update (2015–2020). Future Medicinal Chemistry, 12(24), 2239–2275.
  • Abdel-Rahman, L. H., Abu-Dief, A. A., Aboelez, M. O., & Abdel-Mawgoud, A. A. H. (2017). DNA interaction, antimicrobial, anticancer activities and molecular docking study of some new VO(II), Cr(III), Mn(II) and Ni(II) mononuclear chelates encompassing quaridentate imine ligand. Journal of Photochemistry and Photobiology. B, Biology, 170, 271–285. https://doi.org/10.1016/j.jphotobiol.2017.04.003
  • Abdel-Rahman, L. H., Abu-Dief, A. A., El-Khatib, R. M., & Abdel-Fatah, S. R. (2016). Some new nano-sized Fe(II), Cd(II) and Zn(II) Schiff base complexes as precursor for metal oxides: Sonochemical synthesis, characterization, DNA interaction, in vitro antimicrobial and anticancer activities. Bioorganic Chemistry, 69, 140–152. https://doi.org/10.1016/j.bioorg.2016.10.009
  • Abdel-Rahman, L. H., Abu-Dief, A. M., Basha, M., & Abdel-Mawgoud, A. A. H. (2017). Three novel Ni(II), VO(II) and Cr(III) mononuclear complexes encompassing potentially tridentate imine ligand: Synthesis, structural characterization, DNA interaction, antimicrobial evaluation and anticancer activity. Applied Organometalallic Chemistry, 31(11), e3570.
  • Abdel-Rahman, L. H., Abu-Dief, A. M., Moustafa, H., & Abdel-Mawgoud, A. A. H. (2020). Design and nonlinear optical properties (NLO) using DFT approach of new Cr(III), VO(II), and Ni(II) chelates incorporating tri-dentate imine ligand for DNA interaction, antimicrobial, anticancer activities and molecular docking studies. Arabian Journal of Chemistry, 13(1), 649–670. https://doi.org/10.1016/j.arabjc.2017.07.007
  • Abdel-Rahman, L. H., Abu-Dief, A. M., Shehata, M. R., & Atlam, F. M. (2019). Some new Ag(I), VO(II) and Pd(II) chelates incorporating tridentate imine ligand: Design, synthesis, structure elucidation, density functional theory calculations for DNA interaction, antimicrobial and anticancer activities and molecular docking studies. Applied Organometalallic Chemistry, 33(4), e4699.
  • Abdel-Rahman, L. H., Adam, M. S. S., Abu-Dief, A. M., Moustafa, H., Basha, M. T., Aboraia, A. S., Al-Farhan, B. S., & Ahmed, H. E. (2018). Synthesis, theoretical investigations, biocidal screening, DNA binding, in vitro cytotoxicity and molecular docking of novel Cu (II), Pd (II) and Ag (I) complexes of chlorobenzylidene Schiff base: Promising antibiotic and anticancer agents. Applied Organometalallic Chemistry, 32, e4527.
  • Abou-Hussein, A. A., & Linert, W. (2014). Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 117, 763–771. https://doi.org/10.1016/j.saa.2013.06.078
  • Abu-Dief, A. M., Alotaibi, N. H., Al-Farraj, E. S., Qasem, Alzahrani, S., Mahfouz, M. K., H. A., & Abdou, A. (2022). Fabrication, structural elucidation, theoretical, TD-DFT, vibrational calculation and molecular docking studies of some novel adenine imine chelates for biomedical applications. Journal of Molecular Liquids, 365(1), 119961. https://doi.org/10.1016/j.molliq.2022.119961
  • Abu-Dief, A. M., El-Khatib, R. M., Aljohani, F. S., Al-Abdulkarim, H. A., Alzahrani, S., El-Sarrag, G., & Ismael, M. (2022). Synthesis, structural elucidation, DFT calculation, biological studies and DNA interaction of some aryl hydrazone Cr3+, Fe3+, and Cu2+ chelates. Computational Biology and Chemistry, 97, 107643. https://doi.org/10.1016/j.compbiolchem.2022.107643
  • Abu-Dief, A. M., El-Khatib, R. M., Aljohani, F. S., Alzahrani, S. O., Mahran, A., Khalifa, M. E., & El-Metwaly, N. M. (2021). Synthesis and intensive characterization for novel Zn(II), Pd(II), Cr(III) and VO(II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. Journal of Molecular Structure, 1242, 130693. https://doi.org/10.1016/j.molstruc.2021.130693
  • Abu-Dief, A. M., El-Khatib, R. M., El‐Dabea, T., Abdou, A., Aljohani, F. S., Al-Farraj, E. S., Barnawi, I. O., & El-Remaily, M. A. A. A. (2023). Fabrication, structural elucidation of some new metal chelates based on N-(1H-Benzoimidazol-2-yl)-guanidine ligand: DNA interaction, pharmaceutical studies and molecular docking approach. Journal of Molecular Liquids, 386, 122353. https://doi.org/10.1016/j.molliq.2023.122353
  • Abu-Dief, A. M., El-Metwaly, N. M., Alzahrani, S. O., Alkhatib, F., Abualnaja, M. M., Tarek, T., El-Dabea, M. A., & El-Remaily, A. (2021). Synthesis and characterization of Fe(III), Pd(II) and Cu(II)-thiazole complexes; DFT, pharmacophore modeling, in-vitro assay and DNA binding studies. Journal of Molecular Liquids, 326, 115277. https://doi.org/10.1016/j.molliq.2021.115277
  • Abu‐Dief, A. M., El‐Sagher, H. M., & Shehata, M. R. (2019). Fabrication, spectroscopic characterization, calf thymus DNA binding investigation, antioxidant and anticancer activities of some antibiotic azomethine Cu (II), Pd (II), Zn (II) and Cr (III) complexes. Applied Organometallic Chemistry, 33(8), e4943. https://doi.org/10.1002/aoc.4943
  • Abu-Dief, A. M., Torres, R. D., Sañudo, E. C., Abdel-Rahman, L. H., & Alcalde, N. A. (2013). Novel sandwich triple-decker dinuclear NdIII-(bis-N,N′-p-bromo-salicylideneamine-1,2-diaminobenzene) complex. Polyhedron, 64, 203–208. https://doi.org/10.1016/j.poly.2013.04.010
  • Aggoun, D., Fernández-García, M., López, D., Bouzerafa, B., Ouennoughi, Y., Setifi, F., & Ourari, A. (2020). New nickel (II) and copper (II) bidentate Schiff base complexes, derived from dihalogenated salicylaldehyde and alkylamine: Synthesis, spectroscopic, thermogravimetry, crystallographic determination and electrochemical studies. Polyhedron, 187, 114640. https://doi.org/10.1016/j.poly.2020.114640
  • Alaghaz, A.-N M., Zayed, M. E., Alharbi, S. A., Ammar, R. A., & Chinnathambi, A. (2015). Synthesis, spectroscopic identification, thermal, potentiometric and antibacterial activity studies of 4-amino-5-mercapto-S-triazole Schiff’s base complexes. Journal of Molecular Structure, 1087, 60–67. https://doi.org/10.1016/j.molstruc.2015.01.035
  • Alaghaz, A.-N. M., Zayed, M. E., & Alharbi, S. A. (2015). Synthesis, spectral characterization, molecular modeling, biological activity and potentiometric studies of 4-amino-5-mercapto-3-methyl-S-triazole Schiff’s base complexes. Journal of Molecular Structure, 1083, 430–440. https://doi.org/10.1016/j.molstruc.2014.10.076
  • Ali, A., Barman, S. K., & Mukherjee, R. (2015). Palladium (II) complex of a redox-active amidophenolate-based O, N, S, N ligand: Its monocation and dication and reactivity with PPh3. Inorganic Chemistry, 54(11), 5182–5194. https://doi.org/10.1021/ic503103e
  • Al‐Mohaimeed, A. M., Al‐Farraj, E. S., Al‐Onazi, W. A., Alothman, A. A., & Almarhoon, Z. M. (2020). Synthesis, characterization, density functional theory, thermal, antimicrobial efficacy, and DNA binding/cleavage studies of Cu (II), Cr (III), Fe (III), Ni (II), Co (II), Zn (II), and Pt (IV) complexes with a derivative of 2‐hydroxyphenoxymethylfuran‐5‐carbaldehyde. Journal of the Chinese Chemical Society, 67(11), 2100–2117. https://doi.org/10.1002/jccs.202000042
  • Al-Noor, T. H., Mohapatra, R. K., Azam, M., Karem, L. K. A., Mohapatra, P. K., Ibrahim, A. A., Parhi, P. K., Dash, G. C., El-Ajaily, M. M., Al-Resayes, S. I., Raval, M. K., & Pintilie, L. (2021). Mixed-ligand complexes of ampicillin derived Schiff base ligand and Nicotinamide: Synthesis, physico-chemical studies, DFT calculation, antibacterial study and molecular docking analysis. Journal of Molecular Structure, 1229, 129832. https://doi.org/10.1016/j.molstruc.2020.129832
  • Al-Qahtani, S. D., Alsoliemy, A., Almehmadi, S. J., Kholood Alkhamis, K., Abdulmajeed, F., Alrefaei, A. F., Rania Zaky, R., & Nashwa El-Metwaly, N. (2021). Green synthesis for new Co(II), Ni(II), Cu(II) and Cd(II) hydrazone-based complexes; characterization, biological activity and electrical conductance of nano-sized copper sulphate. Journal of Molecular Structure, 1244, 131238. https://doi.org/10.1016/j.molstruc.2021.131238
  • Ammar, R. A., Alaghaz, A.-N M., Zayed, M. E., & Al-Bedair, L. A. (2017). Synthesis, spectroscopic, molecular structure, antioxidant, antimicrobial and antitumor behavior of Mn (II), Co (II), Ni (II), Cu (II) and Zn (II) complexes of O2N type tridentate chromone-2-carboxaldehyde Schiff’s base ligand. Journal of Molecular Structure, 1141, 368–381. https://doi.org/10.1016/j.molstruc.2017.03.080
  • Bhale, S. P., Yadav, A. R., Pathare, P. G., Tekale, S. U., Franguelli, F. P., Kótai, L., & Pawar, R. P. (2020). Synthesis, characterization and antimicrobial activity of transition metal complexes of 4-[(2-Hydroxy-4-Methoxyphenyl) Methyleneamino]-2, 4-Dihydro-3h-1, 2, 4-Triazole-3-Thione. European Chemical Bulletin, 9(10–12), 430–435. https://doi.org/10.17628/ecb.2020.9.430-435
  • Broido, A. (1976). Kinetics of solid-phase cellulose pyrolysis. In Thermal uses and properties of carbohydrates and lignins. Academic Press.
  • Calu, L., Badea, M., Chifiriuc, M. C., Bleotu, C., David, G.-I., Ioniţă, G., Măruţescu, L., Lazăr, V., Stanică, N., Soponaru, I., Marinescu, D., & Olar, R. (2015). Synthesis, spectral, thermal, magnetic and biological characterization of Co (II), Ni (II), Cu (II) and Zn (II) complexes with a Schiff base bearing a 1, 2, 4-triazole pharmacophore. Journal of Thermal Analysis and Calorimetry, 120(1), 375–386. https://doi.org/10.1007/s10973-014-3970-5
  • Chattopadhyay, D. (2022). Cisplatin: Forty years of a serendipitous discovery for cancer. Resonance, 27(4), 659–666. https://doi.org/10.1007/s12045-022-1355-9
  • Chaurasia, M., Tomar, D., & Chandra, S. (2019). Synthesis, spectral characterization, and DNA binding studies of Co (II), Ni (II), Cu (II) and Zn (II) complexes of Schiff base 2-((1H-1, 2, 4-triazol-3-ylimino) methyl)-5-methoxyphenol. Journal of Molecular Structure, 1179, 431–442. https://doi.org/10.1016/j.molstruc.2018.11.027
  • Coats, A. W., & Redfern, J. (1964). Kinetic parameters from thermogravimetric data. Nature, 201(4914), 68–69. https://doi.org/10.1038/201068a0
  • Dekar, S., Ouari, K., Bendia, S., Hannachi, D., & Weiss, J. (2018). Mononuclear oxovanadium (IV) Schiff base complex: Synthesis, spectroscopy, electrochemistry, DFT calculation and catalytic activity. Journal of Organometallic Chemistry, 866, 165–176. https://doi.org/10.1016/j.jorganchem.2018.04.015
  • Gadre, S. R., Suresh, C. H., & Mohan, N. (2021). Electrostatic potential topology for probing molecular structure, bonding and reactivity. Molecules (Basel, Switzerland), 26(11), 3289. https://doi.org/10.3390/molecules26113289
  • Gates-Rector, S., & Blanton, T. (2019). The powder diffraction file: A quality materials characterization database. Powder Diffraction, 34(4), 352–360. https://doi.org/10.1017/S0885715619000812
  • Ghanghas, P., Choudhary, A., Kumar, D., & Poonia, K. (2021). Coordination metal complexes with Schiff bases: Useful pharmacophores with comprehensive biological applications. Inorganic Chemistry Communications, 130, 108710. https://doi.org/10.1016/j.inoche.2021.108710
  • Gregoliński, J., Ślepokura, K., Kłak, J., & Witwicki, M. (2022). Multinuclear Ni (II) and Cu (II) complexes of a meso 6 + 6 macrocyclic amine derived from trans-1, 2-diaminocyclopentane and 2, 6-diformylpyridine. Dalton Transactions (Cambridge, England: 2003), 51(25), 9735–9747. https://doi.org/10.1039/d2dt01329k
  • Habib, A., Iqbal, M. A., Bhatti, H. N., & Shahid, M. (2019). Effect of ring substitution on synthesis of benzimidazolium salts and their silver (I) complexes: Characterization, electrochemical studies and evaluation of anticancer potential. Transition Metal Chemistry, 44(5), 431–443. https://doi.org/10.1007/s11243-019-00321-7
  • Hatakeyama, T., & Quinn, F. (1999). Thermal analysis: Fundamentals and applications to polymer science. Chichester: John Wiley. [sl].
  • Hathaway, B., & Tomlinson, A. (1970). Copper (II) ammonia complexes. Coordination Chemistry Reviews, 5(1), 1–43. https://doi.org/10.1016/S0010-8545(00)80073-9
  • Horowitz, H. H., & Metzger, G. (1963). A new analysis of thermogravimetric traces. Analytical Chemistry, 35(10), 1464–1468. https://doi.org/10.1021/ac60203a013
  • Hourahine, B., Aradi, B., Blum, V., Bonafé, F., Buccheri, A., Camacho, C., Cevallos, C., Deshaye, M. Y., Dumitrică, T., Dominguez, A., Ehlert, S., Elstner, M., van der Heide, T., Hermann, J., Irle, S., Kranz, J. J., Köhler, C., Kowalczyk, T., Kubař, T., … Frauenheim, T. (2020). DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. The Journal of Chemical Physics, 152(12), 124101. https://doi.org/10.1063/1.5143190
  • Jeyaraman, P., Alagarraj, A., & Natarajan, R. (2019). In silico and in vitro studies of transition metal complexes derived from curcumin–isoniazid Schiff base. Journal of Biomolecular Structure & Dynamics, 38(2), 488–499. https://doi.org/10.1080/07391102.2019.1581090
  • Karzazi, Y., Belghiti, M. E., El-Hajjaji, F. & Hammouti B. (2016). Density functional theory modeling and Monte Carlo simulation assessment of N-substituted quinoxaline derivatives as mild steel corrosion inhibitors in acidic medium. Journal of Materials and Environmental Science, 7(10), 3916–3929.
  • Liu, X., Manzur, C., Novoa, N., Celedón, S., Carrillo, D., & Hamon, J.-R. (2018). Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coordination Chemistry Reviews, 357, 144–172. https://doi.org/10.1016/j.ccr.2017.11.030
  • Mahmoud, N. F., Abbas, A. A., & Mohamed, G. G. (2021). Synthesis, characterization, antimicrobial, and MOE evaluation of nano 1, 2, 4‐triazole‐based Schiff base ligand with some d‐block metal ions. Applied Organometallic Chemistry, 35(6), e6219. https://doi.org/10.1002/aoc.6219
  • Maravalli, P., & Goudar, T. (1999). Thermal and spectral studies of 3-N-methyl-morpholino-4-amino-5-mercapto-1, 2, 4-triazole and 3-N-methyl-piperidino-4-amino-5-mercapto-1, 2, 4-triazole complexes of cobalt (II), nickel (II) and copper (II). Thermochimica Acta, 325(1), 35–41. https://doi.org/10.1016/S0040-6031(98)00548-6
  • Mohamad, A. D. M., Abualreish, M. J. A., & Abu-Dief, A. A. (2015). Antimicrobial and anticancer activities of cobalt (III)-hydrazone complexes: Solubilities and chemical potentials of transfer in different organic co-solvent-water mixtures. Journal of Molecular Liquids, 290, 111162. https://doi.org/10.1016/j.molliq.2019.111162
  • Mohapatra, R. K., El-Ajaily, M. M., Alassbaly, F. S., Sarangi, A. K., Das, D., Maihub, A. A., Ben-Gweirif, S. F., Mahal, A., Suleiman, M., Perekhoda, L., Azam, M., & Al-Noor, T. H. (2021). DFT, anticancer, antioxidant and molecular docking investigations of some ternary Ni (II) complexes with 2-[(E)-[4-(dimethylamino) phenyl] methyleneamino] phenol. Chemical Papers, 75(3), 1005–1019. https://doi.org/10.1007/s11696-020-01342-8
  • Pardasani, R., & Pardasani, P. (2021). Magnetic properties of copper (II) chloro complex with 5-(2-hydroxy-phenylazo)-2-thiohydantoin, in magnetic properties of paramagnetic compounds, magnetic susceptibility data, Volume 4: A Supplement to Landolt-Börnstein II/31 Series (p. 157–158). Springer.
  • Piloyan, G., Ryabchikov, I., & Novikova, O. (1966). Determination of activation energies of chemical reactions by differential thermal analysis. Nature, 212(5067), 1229–1229. https://doi.org/10.1038/2121229a0
  • Poyraz, S., Belveren, S., Aydınoğlu, S., Ulger, M., de Cózar, A., de Gracia Retamosa, M., Sansano, J. M., & Döndaş, H. A. (2021). Biological properties and conformational studies of amphiphilic Pd (II) and Ni (II) complexes bearing functionalized aroylaminocarbo-N-thioylpyrrolinate units. Beilstein Journal of Organic Chemistry, 17(1), 2812–2821. https://doi.org/10.3762/bjoc.17.192
  • Qin, Y.-L. (2016). A cyanide-bridged heterometallic coordination polymer constructed from square-planar [Ni (CN) 4] 2−: synthesis, crystal structure, thermal decomposition, electron paramagnetic resonance (EPR) spectrum and magnetic properties. Acta Crystallographica Section C: Structural Chemistry, 72(7), 555–560.
  • Rosenberg, B., VanCamp, L., Trosko, J. E., & Mansour, V. H. (1969). Platinum compounds: A new class of potent antitumour agents. Nature, 222(5191), 385–386. https://doi.org/10.1038/222385a0
  • Saha, U., Chatterjee, S., Dolai, M., & Kumar, G. S. (2020). Biophysical and thermodynamic investigations on the differentiation of fluorescence response towards interaction of DNA: A pyrene-based receptor versus its Fe (III) complex. ACS Applied Bio Materials, 3(11), 7810–7820. https://doi.org/10.1021/acsabm.0c00983
  • Saha, U., Dolai, M., & Kumar, G. S. (2020). Targeting nucleic acid with a bioactive fluorophore: Insights from spectroscopic and calorimetric studies. Journal of Molecular Structure, 1220, 128690. https://doi.org/10.1016/j.molstruc.2020.128690
  • Saha, U., Dolai, M., Kumar, G. S., Butcher, R. J., & Konar, S. (2020). New DNA-interactive manganese(II) complex of amidooxime: Crystal structure, DFT calculation, biophysical and molecular docking studies. Journal of Chemical & Engineering Data, 65(11), 5393–5404. https://doi.org/10.1021/acs.jced.0c00529
  • Saha, U., Palmajumder, E., & Mukherjea, K. K. (2016). Synthesis, structure, DNA binding studies and nuclease activities of two luminescent neodymium complexes. Journal of Coordination Chemistry, 69(19), 2920–2941. https://doi.org/10.1080/00958972.2016.1218483
  • Sakthi, M., & Ramu, A. (2017). Synthesis, structure, DNA/BSA binding and antibacterial studies of NNO tridentate Schiff base metal complexes. Journal of Molecular Structure, 1149, 727–735. https://doi.org/10.1016/j.molstruc.2017.08.040
  • Samy, M. E.-M., & Moamen, S. R. (2020). Synthesis and spectroscopic characterizations of New Mercury (II), Cerium (III), and Thorium (IV) captopril drug complexes. 光谱学与光谱分析, 40(11), 3649.
  • Shahabadi, N., Darabi, F., Maghsudi, M., & Kashanian, S. (2010). DNA binding and gel electrophoresis studies of a copper (II) complex containing mixed aliphatic and aromatic dinitrogen ligands. DNA and Cell Biology, 29(6), 329–336. https://doi.org/10.1089/dna.2009.1001
  • Sharfalddin, A. A., Emwas, A.-H., Jaremko, M., & Hussien, M. A. (2021). Synthesis and theoretical calculations of metal-antibiotic chelation with thiamphenicol: In vitro DNA and HSA binding, molecular docking, and cytotoxicity studies. New Journal of Chemistry, 45(21), 9598–9613. https://doi.org/10.1039/D1NJ00293G
  • Shoemaker, D. P., Garland, C. W., & Steinfeld, J. I. (2018). Experiments in physical chemistry. McGraw-Hill.
  • Singh, A., & Barman, P. (2021). Recent advances in schiff base ruthenium metal complexes: Synthesis and applications. Topics in Current Chemistry, 379(4), 1–71. https://doi.org/10.1007/s41061-021-00342-w
  • Smeets, E. W., Voss, J., & Kroes, G.-J. (2019). Specific reaction parameter density functional based on the meta-generalized gradient approximation: Application to H2+ Cu (111) and H2+ Ag (111). The Journal of Physical Chemistry. A, 123(25), 5395–5406. https://doi.org/10.1021/acs.jpca.9b02914
  • Stevens, K., & Pryce, M. H. L. (1953). On the magnetic properties of covalent XY 6 complexes. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 219(1139), 542–555.
  • Tarai, S. K., Mandal, S., Tarai, A., Som, I., Pan, A., Bagchi, A., Biswas, A., & Moi, S. C. (2023). Biophysical study on DNA and BSA binding activity of Cu(II) complex: Synthesis, molecular docking, cytotoxic activity, and theoretical approach. Applied Organometallic Chemistry, 37(8), e7164. https://doi.org/10.1002/aoc.7164
  • Tarai, S., et al. (2023). Bioactivity, molecular docking and anticancer behavior of pyrrolidine based Pt(II) complexes: Their kinetics, DNA and BSA binding study by spectroscopic methods. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 287(1), 122059.
  • Tyagi, P., Chandra, S., Saraswat, B. S., & Sharma, D. (2015). Design, spectral characterization, DFT and biological studies of transition metal complexes of Schiff base derived from 2-aminobenzamide, pyrrole and furan aldehyde. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 143, 1–11. https://doi.org/10.1016/j.saa.2015.02.027
  • Tyagi, P., Tyagi, M., Agrawal, S., Chandra, S., Ojha, H., & Pathak, M. (2017). Synthesis, characterization of 1, 2, 4-triazole Schiff base derived 3d-metal complexes: Induces cytotoxicity in HepG2, MCF-7 cell line, BSA binding fluorescence and DFT study. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 171, 246–257. https://doi.org/10.1016/j.saa.2016.08.008
  • Urmila, S., Dolai, M., Konar, S., Das, A., Butcher, R. J., Kumar, G. S., & Mukhopadhyay, S. (2021). Design and synthesis of a sulphur containing Schiff base drug: DNA binding studies and theoretical calculations. Journal of Biomolecular Structure & Dynamics, 39(1), 263–271. https://doi.org/10.1080/07391102.2019.1708799
  • Yadav, M. (2012). Synthesis, characterization, and biological activity of some transition metal complexes of N-Benzoyl-N′-2-thiophenethiocarbohydrazide. International Journal of Inorganic Chemistry, 2012, 1–8. https://doi.org/10.1155/2012/269497
  • Zhang, Z., Ma, Y., Bu, X., Wu, Q., Hang, Z., Dong, Z., & Wu, X. (2018). Facile one-step synthesis of TiO2/Ag/SnO2 ternary heterostructures with enhanced visible light photocatalytic activity. Scientific Reports, 8(1), 10532. https://doi.org/10.1038/s41598-018-28832-w
  • Zhao, Y., Li, Z., Li, H., Wang, S., & Niu, M. (2018). Synthesis, crystal structure, DNA binding and in vitro cytotoxicity studies of Zn (II) complexes derived from amino-alcohol Schiff-bases. Inorganica Chimica Acta, 482, 136–143. https://doi.org/10.1016/j.ica.2018.06.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.