80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular dynamics, molecular docking, DFT, and ADMET investigations of the Co(II), Cu(II), and Zn(II) chelating on the antioxidant activity and SARS-CoV-2 main protease inhibition of quercetin

ORCID Icon
Received 26 Jun 2023, Accepted 01 Dec 2023, Published online: 20 Dec 2023

References

  • Aalikhani, M., Safdari, Y., Jahanshahi, M., Alikhani, M., & Khalili, M. (2021). Comparison between hesperidin, coumarin, and deferoxamine iron chelation and antioxidant activity against excessive iron in the iron overloaded mice. Frontiers in Neuroscience, 15, 811080. https://doi.org/10.3389/fnins.2021.811080
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Abu-Dief, A. M., Abdel-Rahman, L. H., Abdelhamid, A. A., Marzouk, A. A., Shehata, M. R., Bakheet, M. A., Almaghrabi, O. A., & Nafady, A. (2020). Synthesis and characterization of new Cr (III), Fe (III) and Cu (II) complexes incorporating multi-substituted aryl imidazole ligand: Structural, DFT, DNA binding, and biological implications. Spectrochimica Acta, 228, 117700. https://doi.org/10.1016/j.saa.2019.117700
  • Ahmed, A., Fatima, A., Shakya, S., Rahman, Q. I., Ahmad, M., Javed, S., AlSalem, H. S., & Ahmad, A. (2022). Crystal structure, topology, dft and hirshfeld surface analysis of a Novel Charge transfer complex (L3) of anthraquinone and 4-{[(anthracen-9-yl) meth-yl] amino}-benzoic Acid (L2) exhibiting photocatalytic properties: An experimental and theoretical approach. Molecules, 27(5), 1724. https://doi.org/10.3390/molecules27051724
  • Al-Hazmi, G. H., Hassanien, A., Atta, A., Refat, M. S., Saad, H. A., Shakya, S., & Adam, A. M. A. (2022). Supramolecular charge-transfer complex generated by the interaction between tin (II) 2, 3-naphtalocyanine as a donor with DDQ as an acceptor: Spectroscopic studies in solution state and theoretical calculations. Journal of Molecular Liquids, 362, 119757. https://doi.org/10.1016/j.molliq.2022.119757
  • Alam, S., Sarker, M. M. R., Afrin, S., Richi, F. T., Zhao, C., Zhou, J.-R., & Mohamed, I. N. (2021). Traditional herbal medicines, bioactive metabolites, and plant products against COVID-19: Update on clinical trials and mechanism of actions. Frontiers in Pharmacology, 12, 671498. https://doi.org/10.3389/fphar.2021.671498
  • Bors, W., Heller, W., Michel, C., & Saran, M. (1990). Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods in Enzymology, 186, 343–355. https://doi.org/10.1016/0076-6879(90)86128-i
  • Bukhari, S. B., Memon, S., Tahir, M. M., & Bhanger, M. (2008). Synthesis, characterization and investigation of antioxidant activity of cobalt–quercetin complex. Journal of Molecular Structure, 892(1-3), 39–46. https://doi.org/10.1016/j.molstruc.2008.04.050
  • Chojnacka, K., Witek-Krowiak, A., Skrzypczak, D., Mikula, K., & Młynarz, P. (2020). Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. Journal of Functional Foods, 73, 104146. https://doi.org/10.1016/j.jff.2020.104146
  • Dasdemir, Y., Findik, B. T., Yildiz, H., & Birisci, E. (2023). Blueberry-added black tea: Effects of infusion temperature, drying method, fruit concentration on the iron-polyphenol complex formation, polyphenols profile, antioxidant activity, and sensory properties. Food Chemistry, 410, 135463. https://doi.org/10.1016/j.foodchem.2023.135463
  • Declercq, J. P., Evrard, C., Clippe, A., Stricht, D. V., Bernard, A., & Knoops, B. (2001). Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 Å resolution. Journal of Molecular Biology, 311(4), 751–759. https://doi.org/10.1006/jmbi.2001.4853
  • Devasia, J., Chinnam, S., Khatana, K., Shakya, S., Joy, F., Rudrapal, M., & Nizam, A. (2023). Synthesis, DFT and In Silico Anti-COVID Evaluation of Novel Tetrazole Analogues. Polycyclic Aromatic Compounds, 43(3), 1941–1956. https://doi.org/10.1080/10406638.2022.2036778
  • Fan, C., Wang, X., Song, X., Sun, R., Liu, R., Sui, W., Jin, Y., Wu, T., & Zhang, M. (2023). Identification of a Novel Walnut Iron Chelating Peptide with Potential High Antioxidant Activity and Analysis of Its Possible Binding Sites. Foods, 12(1), 226. https://doi.org/10.3390/foods12010226
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., … Kudin, K. N. (2016). Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox Gaussian 16 Rev. C.01. Wallingford, CT.
  • Hasan, A. H., Hussen, N. H., Shakya, S., Jamalis, J., Pratama, M. R. F., Chander, S., Kharkwal, H., & Murugesan, S. (2022). In silico discovery of multi-targeting inhibitors for the COVID-19 treatment by molecular docking, molecular dynamics simulation studies, and ADMET predictions. Structural Chemistry, 33(5), 1645–1665. https://doi.org/10.1007/s11224-022-01996-y
  • Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82(1), 270–283. https://doi.org/10.1063/1.448799
  • Holtomo, O., Nsangou, M., Fifen, J., & Motapon, O. (2015). Antioxidative Potency and UV–Vis spectra features of the compounds resulting from the chelation of Fe2+ by Caffeic Acid Phenethyl Ester and two of its derivatives. Computational and Theoretical Chemistry, 1067, 135–147. https://doi.org/10.1016/j.comptc.2015.06.006
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Kabanda, M. M., Bahadur, I., & Singh, P. (2023). Antioxidant and anticancer properties of plant‐based bioactive flavonoids cardamonin and alpinetin: A theoretical insight from• OOH antiradical and Cu (II) chelation mechanisms. Journal of Physical Organic Chemistry, 36(2), e4428. https://doi.org/10.1002/poc.4428
  • Kalinowska, M., Lewandowska, H., Pruszyński, M., Świderski, G., Gołębiewska, E., Gryko, K., Braun, J., Borkowska, M., Konieczna, M., & Lewandowski, W. (2021). Co (II) complex of quercetin–spectral, anti-/pro-oxidant and cytotoxic activity in hacat cell lines. Applied Sciences, 11(19), 9244. https://doi.org/10.3390/app11199244
  • Mishra, A., Oliinyk, P., Lysiuk, R., Lenchyk, L., Rathod, S. S. S., ANTonyak, H., Darmohray, R., Dub, N., Antoniv, O., Tsal, O., & Upyr, T. (2022). Flavonoids and stilbenoids as a promising arsenal for the management of chronic arsenic toxicity. Environmental Toxicology and Pharmacology, 95, 103970. https://doi.org/10.1016/j.etap.2022.103970
  • Mlcochova, P., Kemp, S. A., Dhar, M. S., Papa, G., Meng, B., Ferreira, I. A. B A T M., Datir, R., Collier, D. A., Albecka, A., Singh, S., Pandey, R., Brown, J., Zhou, J., Goonawardane, N., Mishra, S., Whittaker, C., Mellan, T., Marwal, R., Datta, M., … Gupta, R. K. (2021). SARS-CoV-2 B. 1.617. 2 Delta variant replication and immune evasion. Nature, 599(7883), 114–119. https://doi.org/10.1038/s41586-021-03944-y
  • Moridani, M. Y., Pourahmad, J., Bui, H., Siraki, A., & O’Brien, P. J. (2003). Dietary flavonoid iron complexes as cytoprotective superoxide radical scavengers. Free Radical Biology & Medicine, 34(2), 243–253. https://doi.org/10.1016/s0891-5849(02)01241-8
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Othman, I. M., Gad-Elkareem, M. A., Anouar, E. H., Snoussi, M., Aouadi, K., & Kadri, A. (2020). Novel fused pyridine derivatives containing pyrimidine moiety as prospective tyrosyl-tRNA synthetase inhibitors: Design, synthesis, pharmacokinetics and molecular docking studies. Journal of Molecular Structure, 1219, 128651. https://doi.org/10.1016/j.molstruc.2020.128651
  • Qi, W., Qi, W., Xiong, D., & Long, M. (2022). Quercetin: Its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy. Molecules, 27(19), 6545. https://doi.org/10.3390/molecules27196545
  • Russo, M., Moccia, S., Spagnuolo, C., Tedesco, I., & Russo, G. L. (2020). Roles of flavonoids against coronavirus infection. Chemico-Biological Interactions, 328, 109211. https://doi.org/10.1016/j.cbi.2020.109211
  • Shastrala, K., Kalam, S., Damerakonda, K., Sheshagiri, S. B. B., Kumar, H., Guda, R., Kasula, M., & Bedada, S. K. (2021). Synthesis, characterization, and pharmacological evaluation of some metal complexes of quercetin as P-gp inhibitors. Future Journal of Pharmaceutical Sciences, 7(1), 99. https://doi.org/10.1186/s43094-021-00252-0
  • Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383, 132531. https://doi.org/10.1016/j.foodchem.2022.132531
  • Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105(8), 2999–3093. https://doi.org/10.1021/cr9904009
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • WHO. (2021). Classification of omicron (B.1.1.529): World health organizations (2021). SARS-CoV-2 variant of concern. W. H. O. Retrieved from https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.52 9)-sars-cov-2-variant-of-concern.
  • Yadav, A. S. (2023). Collating antioxidant, reducing and metal chelating properties of spices and Acacia. Food Chemistry Advances, 2, 100257. https://doi.org/10.1016/j.focha.2023.100257
  • Yang, C.-C., Wu, C.-J., Chien, C.-Y., & Chien, C.-T. (2021). Green tea polyphenol catechins inhibit coronavirus replication and potentiate the adaptive immunity and autophagy-dependent protective mechanism to improve acute lung injury in mice. Antioxidants, 10(6), 928. https://doi.org/10.3390/antiox10060928
  • Yang, Y., Weaver, M. N., & Merz, K. M. (2009). Assessment of the “6-31+ G**+ LANL2DZ” mixed basis set coupled with density functional theory methods and the effective core potential: Prediction of heats of formation and ionization potentials for first-row-transition-metal complexes. The Journal of Physical Chemistry. A, 113(36), 9843–9851. https://doi.org/10.1021/jp807643p
  • Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1–3), 215–241. https://doi.org/10.1007/s00214-007-0310-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.