79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative studies of structure and dynamics of caprine, leporine, ovine, and equine serum albumins

ORCID Icon, , , , , & show all
Received 19 Oct 2023, Accepted 05 Dec 2023, Published online: 20 Dec 2023

References

  • Adams, R., Griffin, L., & Compson, J. E. (2016). Extending the half-life of a fab fragment through generation of a humanized anti-human serum albumin FV domain: An investigation into the correlation between affinity and serum half-life [Paper presentation]. Paper Presented at Mabs.
  • Apiwat, C., Luksirikul, P., Kankla, P., Pongprayoon, P., Treerattrakoon, K., Paiboonsukwong, K., Fucharoen, S., Dharakul, T., & Japrung, D. (2016). Graphene based aptasensor for glycated albumin in diabetes mellitus diagnosis and monitoring. Biosensors & Bioelectronics, 82, 140–145. https://doi.org/10.1016/j.bios.2016.04.015
  • Awang, T., Wiriyatanakorn, N., Saparpakorn, P., Japrung, D., & Pongprayoon, P. (2016). Understanding the effects of two bound glucose in Sudlow site I on structure and function of human serum albumin: Theoretical studies. Journal of Biomolecular Structure & Dynamics, 35(4), 781–790.
  • Bertucci, C., & Domenici, E. (2002). Reversible and covalent binding of drugs to human serum albumin: Methodological approaches and physiological relevance. Current Medicinal Chemistry, 9(15), 1463–1481. https://doi.org/10.2174/0929867023369673
  • Bonanata, J., Turell, L., Antmann, L., Ferrer-Sueta, G., Botasini, S., Méndez, E., Alvarez, B., & Coitiño, E. L. (2017). The thiol of human serum albumin: Acidity, microenvironment and mechanistic insights on its oxidation to sulfenic acid. Free Radical Biology & Medicine, 108, 952–962. https://doi.org/10.1016/j.freeradbiomed.2017.04.021
  • Bujacz, A. (2012). Structures of bovine, equine and leporine serum albumin. Acta Crystallographica. Section D, Biological Crystallography, 68(Pt 10), 1278–1289. https://doi.org/10.1107/S0907444912027047
  • Chaudhury, C., Brooks, C. L., Carter, D. C., Robinson, J. M., & Anderson, C. L. (2006). Albumin binding to FcRn: Distinct from the FcRn − IgG interaction. Biochemistry, 45(15), 4983–4990. https://doi.org/10.1021/bi052628y
  • Chawjiraphan, W., Apiwat, C., Segkhoonthod, K., Treerattrakoon, K., Pinpradup, P., Sathirapongsasuti, N., Pongprayoon, P., Luksirikul, P., Isarankura-Na-Ayudhya, P., & Japrung, D. (2020). Albuminuria detection using graphene oxide-mediated fluorescence quenching aptasensor. MethodsX, 7, 101114. https://doi.org/10.1016/j.mex.2020.101114
  • Cho, S. Y., Han, J., Cha, S. H., & Yoon, S. I. (2020). Structural basis of serum albumin recognition by SL335, an antibody Fab extending the serum half-life of protein therapeutics. Biochemical and Biophysical Research Communications, 526(4), 941–946. https://doi.org/10.1016/j.bbrc.2020.03.133
  • de Silva, R., Dasanayake, W. M. D. K., Wickramasinhe, G. D., Karunatilake, C., Weerasinghe, N., Gunasekera, P., & Malavige, G. N. (2017). Sensitization to bovine serum albumin as a possible cause of allergic reactions to vaccines. Vaccine, 35(11), 1494–1500. https://doi.org/10.1016/j.vaccine.2017.02.009
  • Grammer, L. C., Roberts, M., Nicholls, A. J., Platts, M., & Patterson, R. (1984). IgE against ethylene oxide-altered human serum albumin patients who have had acute dialysis reactions. The Journal of Allergy and Clinical Immunology, 74(4 Pt 1), 544–546. https://doi.org/10.1016/0091-6749(84)90392-0
  • Hemmer, W., Sestak-Greinecker, G., Braunsteiner, T., Wantke, F., & Wöhrl, S. (2021). Molecular sensitization patterns in animal allergy: Relationship with clinical relevance and pet ownership. Allergy, 76(12), 3687–3696. https://doi.org/10.1111/all.14885
  • Horowitz, F. B., Read, R. L., & Powell, L. L. (2015). A retrospective analysis of 25% human serum albumin supplementation in hypoalbuminemic dogs with septic peritonitis. The Canadian Veterinary Journal, 56(6), 591–597.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38, 27–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Johansson, E., Nielsen, A. D., Demuth, H., Wiberg, C., Schjødt, C. B., Huang, T., Chen, J., Jensen, S., Petersen, J., & Thygesen, P. (2020). Identification of binding sites on human serum albumin for somapacitan, a long-acting growth hormone derivative. Biochemistry, 59(14), 1410–1419. https://doi.org/10.1021/acs.biochem.0c00019
  • Ketrat, S., Japrung, D., & Pongprayoon, P. (2020). Exploring how structural and dynamic properties of bovine and canine serum albumins differ from human serum albumin. Journal of Molecular Graphics & Modelling, 98, 107601. https://doi.org/10.1016/j.jmgm.2020.107601
  • Kratz, F. (2008). Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release, 132(3), 171–183. https://doi.org/10.1016/j.jconrel.2008.05.010
  • Krieger, E., & Vriend, G. (2015). New ways to boost molecular dynamics simulations. Journal of Computational Chemistry, 36(13), 996–1007. https://doi.org/10.1002/jcc.23899
  • Kuhlmann, M., Hamming, J. B. R., Voldum, A., Tsakiridou, G., Larsen, M. T., Schmøkel, J. S., Sohn, E., Bienk, K., Schaffert, D., Sørensen, E. S., Wengel, J., Dupont, D. M., & Howard, K. A. (2017). An albumin-oligonucleotide assembly for potential combinatorial drug delivery and half-life extension applications. Molecular Therapy. Nucleic Acids, 9, 284–293. https://doi.org/10.1016/j.omtn.2017.10.004
  • Lindahl, E., Hess, B., & van der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7(8), 306–317. https://doi.org/10.1007/s008940100045
  • Marques, M. L., Falcão, I., Labrador Horrillo, M., Falcão, H., & Cunha, L. (2021). Milk and cow’s meat allergy in a child: A clinical case.
  • Mathews, K. A. (2008). The therapeutic use of 25% human serum albumin in critically ill dogs and cats. The Veterinary Clinics of North America. Small Animal Practice, 38(3), 595–605. xi-xii. https://doi.org/10.1016/j.cvsm.2008.02.004
  • Nakashima, F., Shibata, T., Kamiya, K., Yoshitake, J., Kikuchi, R., Matsushita, T., Ishii, I., Giménez-Bastida, J. A., Schneider, C., & Uchida, K. (2018). Structural and functional insights into S-thiolation of human serum albumins. Scientific Reports, 8(1), 932. https://doi.org/10.1038/s41598-018-19610-9
  • Narazaki, R., Maruyama, T., & Otagiri, M. (1997). Probing the cysteine 34 residue in human serum albumin using fluorescence techniques. Biochimica et Biophysica Acta, 1338(2), 275–281. https://doi.org/10.1016/s0167-4838(96)00221-x
  • Niramitranon, J., Japrung, D., Boonmee, A., Koonawootrittriron, S., Suwanasopee, T., Jattawa, D., & Pongprayoon, P. (2023). Dynamic and structural properties of porcine serum albumins. Molecular Simulation, 49(9), 877–884. https://doi.org/10.1080/08927022.2023.2200485
  • Panman, W., Japrung, D., & Pongprayoon, P. (2016). Exploring the interactions of a DNA aptamer with human serum albumins: Simulation studies. Journal of Biomolecular Structure & Dynamics, 35(11), 2328–2336.
  • Pongprayoon, P., & Gleeson, M. P. (2014). Probing the binding site characteristics of HSA: A combined molecular dynamics and cheminformatics investigation. Journal of Molecular Graphics & Modelling, 54, 164–173. https://doi.org/10.1016/j.jmgm.2014.10.007
  • Pongprayoon, P., & Japrung, D. (2021). Revealing the structural dynamics of feline serum albumin. Structural Chemistry, 32(1), 69–77. https://doi.org/10.1007/s11224-020-01619-4
  • Qi, J., Zhang, Y., Gou, Y., Lee, P., Wang, J., Chen, S., Zhou, Z., Wu, X., Yang, F., & Liang, H. (2016). Multidrug delivery systems based on human serum albumin for combination therapy with three anticancer agents. Molecular Pharmaceutics, 13(9), 3098–3105. https://doi.org/10.1021/acs.molpharmaceut.6b00277
  • Rahimizadeh, P., Yang, S., & Lim, S. I. (2020). Albumin: An emerging opportunity in drug delivery. Biotechnology and Bioprocess Engineering, 25(6), 985–995. https://doi.org/10.1007/s12257-019-0512-9
  • Restani, P., Fiocchi, A., Beretta, B., Velonà, T., Giovannini, M., & Galli, C. L. (1998). Effects of structure modifications on IgE binding properties of serum albumins. International Archives of Allergy and Immunology, 117(2), 113–119. https://doi.org/10.1159/000023997
  • Sand, K. M., Bern, M., Nilsen, J., Noordzij, H. T., Sandlie, I., & Andersen, J. T. (2014). Unraveling the Interaction between FcRn and albumin: Opportunities for design of albumin-based therapeutics. Frontiers in Immunology, 5, 682. https://doi.org/10.3389/fimmu.2014.00682
  • Schmøkel, J., Voldum, A., Tsakiridou, G., Kuhlmann, M., Cameron, J., Sørensen, E. S., Wengel, J., & Howard, K. A. (2017). Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding. Nanotechnology, 28(20), 204004. https://doi.org/10.1088/1361-6528/aa6a9b
  • Simard, J. R., Zunszain, P. A., Ha, C.-E., Yang, J. S., Bhagavan, N. V., Petitpas, I., Curry, S., & Hamilton, J. A. (2005). Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 17958–17963. https://doi.org/10.1073/pnas.0506440102
  • Sleep, D. (2015). Albumin and its application in drug delivery. Expert Opinion on Drug Delivery, 12(5), 793–812. https://doi.org/10.1517/17425247.2015.993313
  • Solanki, R., Rostamabadi, H., Patel, S., & Jafari, S. M. (2021). Anticancer nano-delivery systems based on bovine serum albumin nanoparticles: A critical review. International Journal of Biological Macromolecules, 193(Pt A), 528–540. https://doi.org/10.1016/j.ijbiomac.2021.10.040
  • Spada, A., Emami, J., Tuszynski, J. A., & Lavasanifar, A. (2021). The uniqueness of albumin as a carrier in nanodrug delivery. Molecular Pharmaceutics, 18(5), 1862–1894. https://doi.org/10.1021/acs.molpharmaceut.1c00046
  • Spitzauer, S., Pandjaitan, B., Muhl, S., Ebner, C., Kraft, D., Valenta, R., & Rumpold, H. (1997). Major cat and dog allergens share IgE epitopes. Journal of Allergy and Clinical Immunology, 99(1), 100–106. https://doi.org/10.1016/S0091-6749(97)81050-0
  • Stewart, A. J., Blindauer, C. A., Berezenko, S., Sleep, D., Tooth, D., & Sadler, P. J. (2005). Role of Tyr84 in controlling the reactivity of Cys34 of human albumin. The FEBS Journal, 272(2), 353–362. https://doi.org/10.1111/j.1742-4658.2004.04474.x
  • Unni, S., Huang, Y., Hanson, R. M., Tobias, M., Krishnan, S., Li, W. W., Nielsen, J. E., & Baker, N. A. (2011). Web servers and services for electrostatics calculations with APBS and PDB2PQR. Journal of Computational Chemistry, 32(7), 1488–1491. https://doi.org/10.1002/jcc.21720
  • Viganó, F., Perissinotto, L., & Bosco, V. R. F. (2010). Administration of 5% human serum albumin in critically ill small animal patients with hypoalbuminemia: 418 dogs and 170 cats (1994–2008). Journal of Veterinary Emergency and Critical Care, 20(2), 237–243. https://doi.org/10.1111/j.1476-4431.2010.00526.x
  • Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., & Barton, G. J. (2009). Jalview Version 2–A multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189–1191. https://doi.org/10.1093/bioinformatics/btp033
  • Williams, A. M., & Dickinson, R. G. (1994). Studies on the reactivity of acyl glucuronides–VI. Modulation of reversible and covalent interaction of diflunisal acyl glucuronide and its isomers with human plasma protein in vitro. Biochemical Pharmacology, 47(3), 457–467. https://doi.org/10.1016/0006-2952(94)90176-7
  • Zheng, Z., Wang, Y., Li, M., Li, D., Nie, A., Chen, M., Ruan, Q., Guo, Y., & Guo, J. (2022). Albumins as extracellular protein nanoparticles collaborate with plasma ions to control biological osmotic pressure. International Journal of Nanomedicine, 17, 4743–4756. https://doi.org/10.2147/IJN.S383530

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.