150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification of potential inhibitors targeting Ebola virus VP35 protein: a computational strategy

, , , , , , , , & show all
Received 09 Aug 2023, Accepted 04 Dec 2023, Published online: 20 Dec 2023

References

  • Baell, J. B., & Holloway, G. A. (2010). New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. Journal of Medicinal Chemistry, 53(7), 2719–2740. https://doi.org/10.1021/jm901137j
  • Baig, M. H., Ahmad, K., Rabbani, G., Danishuddin, M., & Choi, I. (2018). Computer aided drug design and its application to the development of potential drugs for neurodegenerative disorders. Current Neuropharmacology, 16(6), 740–748. https://doi.org/10.2174/1570159X15666171016163510
  • Basler, C. F., Wang, X., Mühlberger, E., Volchkov, V., Paragas, J., Klenk, H. D., García-Sastre, A., & Palese, P. (2000). The Ebola virus VP35 protein functions as a type I IFN antagonist. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12289–12294. https://doi.org/10.1073/pnas.220398297
  • Bray, M., & Geisbert, T. W. (2005). Ebola virus: The role of macrophages and dendritic cells in the pathogenesis of Ebola hemorrhagic fever. The International Journal of Biochemistry & Cell Biology, 37(8), 1560–1566. https://doi.org/10.1016/j.biocel.2005.02.018
  • Brown, C. S., Lee, M. S., Leung, D. W., Wang, T., Xu, W., Luthra, P., Anantpadma, M., Shabman, R. S., Melito, L. M., MacMillan, K. S., Borek, D. M., Otwinowski, Z., Ramanan, P., Stubbs, A. J., Peterson, D. S., Binning, J. M., Tonelli, M., Olson, M. A., Davey, R. A., … Amarasinghe, G. K. (2014). In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity. Journal of Molecular Biology, 426(10), 2045–2058. https://doi.org/10.1016/j.jmb.2014.01.010
  • Burke, J., Declerq, R., Ghysebrechts, G., Pattyn, S. R., Piot, P., Ronsmans, M., Ruppol, J. F., Thonon, D., Van Der Groen, G., Van Nieuwenhove, S., Witvrouwen, M., Colbourne, G., Courtois, D., Dujeu, G., Germain, M., Raffier, G., Sureau, P., Vita, K., Koth, A.,… & Adrien, S. (1978). Ebola hemorrhagic-fever in Zaire, 1976-report of an International-Commission. Bulletin of the World Health Organization, 56(2), 271–293.
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
  • Cole, J. C., Wiggin, S., & Stanzione, F. (2019). New insights and innovation from a million crystal structures in the Cambridge Structural Database. Structural Dynamics (Melville, N.Y.), 6(5), 054301. https://doi.org/10.1063/1.5116878
  • Cui, T., & Zhang, J. (2015, October). Bioinformatics analysis of Zaire Ebola virus evolution [Paper presentation]. 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI), In (pp. 435–439). IEEE. https://doi.org/10.1109/BMEI.2015.7401544
  • Denis, M., Anita, K. M., Hilde, D. C., Stephan, G., & Johan, V. G. (2019). Ebola virus disease. Lancet, 393, 936–948.
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Fanunza, E., Frau, A., Corona, A., & Tramontano, E. (2019). Insights into Ebola virus VP35 and VP24 interferon inhibitory functions and their initial exploitation as drug targets. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders), 19(4), 362–374.
  • Fausther-Bovendo, H., & Kobinger, G. (2021). Vaccine innovation spurred by the long wait for an Ebola virus vaccine. The Lancet. Infectious Diseases, 21(4), 440–441. https://doi.org/10.1016/S1473-3099(20)30515-6
  • Geisbert, T. W., & Hensley, L. E. (2004). Ebola virus: New insights into disease aetiopathology and possible therapeutic interventions. Expert Reviews in Molecular Medicine, 6(20), 1–24. https://doi.org/10.1017/S1462399404008300
  • Gire, S. K., Goba, A., Andersen, K. G., Sealfon, R. S. G., Park, D. J., Kanneh, L., Jalloh, S., Momoh, M., Fullah, M., Dudas, G., Wohl, S., Moses, L. M., Yozwiak, N. L., Winnicki, S., Matranga, C. B., Malboeuf, C. M., Qu, J., Gladden, A. D., Schaffner, S. F., … Sabeti, P. C. (2014). Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science (New York, N.Y.), 345(6202), 1369–1372. https://doi.org/10.1126/science.1259657
  • Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5-6), 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7), 1757–1768. https://doi.org/10.1021/ci3001277
  • Iversen, P. L., Kane, C. D., Zeng, X., Panchal, R. G., Warren, T. K., Radoshitzky, S. R., Kuhn, J. H., Mudhasani, R. R., Cooper, C. L., Shurtleff, A. C., Nasar, F., Sunay, M. M., Duplantier, A. J., Eaton, B. P., Zumbrun, E. E., Bixler, S. L., Martin, S., Meinig, J. M., Chiang, C.-Y., … Saunders, D. L. (2020). Recent successes in therapeutics for Ebola virus disease: No time for complacency. The Lancet. Infectious Diseases, 20(9), e231–e237. https://doi.org/10.1016/S1473-3099(20)30282-6
  • Jain, S., Martynova, E., Rizvanov, A., Khaiboullina, S., & Baranwal, M. (2021). Structural and functional aspects of Ebola virus proteins. Pathogens (Basel, Switzerland), 10(10), 1330. https://doi.org/10.3390/pathogens10101330
  • Jasial, S., Hu, Y., & Bajorath, J. (2017). How frequently are pan-assay interference compounds active? Large-scale analysis of screening data reveals diverse activity profiles, low global hit frequency, and many consistently inactive compounds. Journal of Medicinal Chemistry, 60(9), 3879–3886. https://doi.org/10.1021/acs.jmedchem.7b00154
  • Kawai, T., & Akira, S. (2007). Antiviral signaling through pattern recognition receptors. Journal of Biochemistry, 141(2), 137–145. https://doi.org/10.1093/jb/mvm032
  • Khabbaz, R., Bell, B. P., Schuchat, A., Ostroff, S. M., Moseley, R., Levitt, A., & Hughes, J. M. (2015). Emerging and reemerging infectious disease threats. In Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 158. Elsevier Saunders.
  • Khan, A., Khan, S. A., Zia, K., Altowyan, M. S., Barakat, A., & Ul-Haq, Z. (2022). Deciphering the impact of mutations on the binding efficacy of SARS-CoV-2 omicron and delta variants with human ACE2 receptor. Frontiers in Chemistry, 10, 892093. https://doi.org/10.3389/fchem.2022.892093
  • Khan, S. A., Khan, A., Zia, K., Shawish, I., Barakat, A., & Ul-Haq, Z. (2022). Cheminformatics-based discovery of potential chemical probe inhibitors of omicron spike protein. International Journal of Molecular Sciences, 23(18), 10315. https://doi.org/10.3390/ijms231810315
  • Khan, S. A., Zia, K., Ashraf, S., Uddin, R., & Ul-Haq, Z. (2021). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure & Dynamics, 39(7), 2607–2616. https://doi.org/10.1080/07391102.2020.1751298
  • Leung, D. W., Ginder, N. D., Fulton, D. B., Nix, J., Basler, C. F., Honzatko, R. B., & Amarasinghe, G. K. (2009). Structure of the Ebola VP35 interferon inhibitory domain. Proceedings of the National Academy of Sciences of the United States of America, 106(2), 411–416. https://doi.org/10.1073/pnas.0807854106
  • Leung, D. W., Prins, K. C., Borek, D. M., Farahbakhsh, M., Tufariello, J. M., Ramanan, P., Nix, J. C., Helgeson, L. A., Otwinowski, Z., Honzatko, R. B., Basler, C. F., & Amarasinghe, G. K. (2010). Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35. Nature Structural & Molecular Biology, 17(2), 165–172. https://doi.org/10.1038/nsmb.1765
  • Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235–249. https://doi.org/10.1016/s1056-8719(00)00107-6
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Liu, G., Nash, P. J., Johnson, B., Pietzsch, C., Ilagan, M. X. G., Bukreyev, A., Basler, C. F., Bowlin, T. L., Moir, D. T., Leung, D. W., & Amarasinghe, G. K. (2017). A sensitive in vitro high-throughput screen to identify pan-filoviral replication inhibitors targeting the VP35–NP interface. ACS Infectious Diseases, 3(3), 190–198. https://doi.org/10.1021/acsinfecdis.6b00209
  • Luo, D., Zheng, R., Wang, D., Zhang, X., Yin, Y., Wang, K., & Wang, W. (2019). Effect of sexual transmission on the West Africa Ebola outbreak in 2014: A mathematical modelling study. Scientific Reports, 9(1), 1653. https://doi.org/10.1038/s41598-018-38397-3
  • Meza, J. C. (2010). Steepest descent. WIREs Computational Statistics, 2(6), 719–722. https://doi.org/10.1002/wics.117
  • Mirza, M. U., & Ikram, N. (2016). Integrated computational approach for virtual hit identification against ebola viral proteins VP35 and VP40. International Journal of Molecular Sciences, 17(11), 1748. https://doi.org/10.3390/ijms17111748
  • Molecular Operating Environment (MOE). (2018). Version 2018.0101; Chemical Computing Group Inc.: Montreal, QC, Canada.
  • Mühlberger, E., Weik, M., Volchkov, V. E., Klenk, H. D., & Becker, S. (1999). Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. Journal of Virology, 73(3), 2333–2342. https://doi.org/10.1128/JVI.73.3.2333-2342.1999
  • O'Donnell, K. L., & Marzi, A. (2021). Immunotherapeutics for ebola virus disease: Hope on the horizon. Biologics: Targets & Therapy, 15, 79–86. https://doi.org/10.2147/BTT.S259069
  • Olukitibi, T. A., Ao, Z., Mahmoudi, M., Kobinger, G. A., & Yao, X. (2019). Dendritic cells/macrophages-targeting feature of Ebola glycoprotein and its potential as immunological facilitator for antiviral vaccine approach. Microorganisms, 7(10), 402. https://doi.org/10.3390/microorganisms7100402
  • Qureshi, A. I. (2016). Clinical manifestations and laboratory diagnosis of Ebola virus infection. Ebola Virus Disease, 117. Academic Press.
  • Rajak, H., Jain, D. K., Singh, A., Sharma, A. K., & Dixit, A. (2015). Ebola virus disease: Past, present and future. Asian Pacific Journal of Tropical Biomedicine, 5(5), 337–343. https://doi.org/10.1016/S2221-1691(15)30365-8
  • Rastelli, G., Rio, A. D., Degliesposti, G., & Sgobba, M. (2010). Fast and accurate predictions of binding free energies using MM‐PBSA and MM‐GBSA. Journal of Computational Chemistry, 31(4), 797–810. https://doi.org/10.1002/jcc.21372
  • Rewar, S., & Mirdha, D. (2014). Transmission of Ebola virus disease: An overview. Annals of Global Health, 80(6), 444–451. https://doi.org/10.1016/j.aogh.2015.02.005
  • Rojas, M., Monsalve, D. M., Pacheco, Y., Acosta-Ampudia, Y., Ramírez-Santana, C., Ansari, A. A., Gershwin, M. E., & Anaya, J. M. (2020). Ebola virus disease: An emerging and re-emerging viral threat. Journal of Autoimmunity, 106, 102375. https://doi.org/10.1016/j.jaut.2019.102375
  • Sanchez, A. (2007). Analysis of filovirus entry into vero e6 cells, using inhibitors of endocytosis, endosomal acidification, structural integrity, and cathepsin (B and L) activity. The Journal of Infectious Diseases, 196 Suppl 2(s2), S251–S258. https://doi.org/10.1086/520597
  • Saphire, E. O. (2020). A vaccine against Ebola virus. Cell, 181(1), 6.
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & Van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal: EBJ, 40(7), 843–856. https://doi.org/10.1007/s00249-011-0700-9
  • Schreiber-Stainthorp, W., Solomon, J., Lee, J. H., Castro, M., Shah, S., Martinez-Orengo, N., Reeder, R., Maric, D., Gross, R., Qin, J., Hagen, K. R., Johnson, R. F., & Hammoud, D. A. (2021). Longitudinal in vivo imaging of acute neuropathology in a monkey model of Ebola virus infection. Nature Communications, 12(1), 2855. https://doi.org/10.1038/s41467-021-23088-x
  • Stern, H. A. (2004). Simple algorithm for isothermal–isobaric molecular dynamics. Journal of Computational Chemistry, 25(5), 749–761. https://doi.org/10.1002/jcc.20001
  • Taylor, D. J., Leach, R. W., & Bruenn, J. (2010). Filoviruses are ancient and integrated into mammalian genomes. BMC Evolutionary Biology, 10(1), 193. https://doi.org/10.1186/1471-2148-10-193
  • Wadood, A., Riaz, M., Uddin, R., & Ul-Haq, Z. (2014). In silico identification and evaluation of leads for the simultaneous inhibition of protease and helicase activities of HCV NS3/4A protease using complex based pharmacophore mapping and virtual screening. PloS One, 9(2), e89109. https://doi.org/10.1371/journal.pone.0089109
  • Wilson, J. A., Bray, M., Bakken, R., & Hart, M. K. (2001). Vaccine potential of Ebola virus VP24, VP30, VP35, and VP40 proteins. Virology, 286(2), 384–390. https://doi.org/10.1006/viro.2001.1012
  • Wittmann, T. J., Biek, R., Hassanin, A., Rouquet, P., Reed, P., Yaba, P., Pourrut, X., Real, L. A., Gonzalez, J. P., & Leroy, E. M. (2007). Isolates of Zaire ebolavirus from wild apes reveal genetic lineage and recombinants. Proceedings of the National Academy of Sciences of the United States of America, 104(43), 17123–17127. 104https://doi.org/10.1073/pnas.0704076104
  • Zia, K., Khan, S. A., Ashraf, S., Nur-e-Alam, M., Ahmed, S., & Ul-Haq, Z. (2021). Probing CAS database as prospective antiviral agents against SARS-CoV-2 main protease. Journal of Molecular Structure, 1231, 129953. https://doi.org/10.1016/j.molstruc.2021.129953

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.