109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular insights to the anti-COVID-19 potential of α-, β- and γ-cyclodextrins

, , , , , , , & show all
Received 10 Aug 2023, Accepted 05 Dec 2023, Published online: 20 Dec 2023

References

  • Almeida, B., Domingues, C., Mascarenhas-Melo, F., Silva, I., Jarak, I., Veiga, F., & Figueiras, A. (2023). The role of cyclodextrins in COVID-19 therapy-A literature review. International Journal of Molecular Sciences, 24(3), 2974. https://doi.org/10.3390/ijms24032974
  • Bezerra, B. B., Silva, G., Coelho, S. V. A., Correa, I. A., Souza, M. R. M., Macedo, K. V. G., Matos, B. M., Tanuri, A., Matassoli, F. L., Costa, L. J. D., Hildreth, J. E. K., & Arruda, L. B. (2022). Hydroxypropyl-beta-cyclodextrin (HP-BCD) inhibits SARS-CoV-2 replication and virus-induced inflammatory cytokines. Antiviral Research, 205, 105373. https://doi.org/10.1016/j.antiviral.2022.105373
  • Bhowmick, N. A., Oft, J., Dorff, T., Pal, S., Agarwal, N., Figlin, R. A., Posadas, E. M., Freedland, S. J., & Gong, J. (2020). COVID-19 and androgen-targeted therapy for prostate cancer patients. Endocrine-Related Cancer, 27(9), R281–R292. https://doi.org/10.1530/ERC-20-0165
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Davey, R. A., & Grossmann, M. (2016). Androgen receptor structure, function and biology: From bench to bedside. The Clinical Biochem. Reviews, 37(1), 3–15.
  • Ergoren, M. C., Paolacci, S., Manara, E., Dautaj, A., Dhuli, K., Anpilogov, K., Camilleri, G., Suer, H. K., Sayan, M., Tuncel, G., Sultanoglu, N., Farronato, M., Tartaglia, G. M., Dundar, M., Farronato, G., Gunsel, I. S., Bertelli, M., & Sanlidag, T. (2020). A pilot study on the preventative potential of alpha-cyclodextrin and hydroxytyrosol against SARS-CoV-2 transmission. Acta Bio-Medica: Atenei Parmensis, 91(13-S), e2020022. https://doi.org/10.23750/abm.v91i13-S.10817
  • Fraser, B. J., Beldar, S., Seitova, A., Hutchinson, A., Mannar, D., Li, Y., Kwon, D., Tan, R., Wilson, R. P., Leopold, K., Subramaniam, S., Halabelian, L., Arrowsmith, C. H., & Bénard, F. (2022). Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation. Nature Chemical Biology, 18(9), 963–971. https://doi.org/10.1038/s41589-022-01059-7
  • Glowacka, I., Bertram, S., Herzog, P., Pfefferle, S., Steffen, I., Muench, M. O., Simmons, G., Hofmann, H., Kuri, T., Weber, F., Eichler, J., Drosten, C., & Pöhlmann, S. (2010). Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. Journal of Virology, 84(2), 1198–1205. https://doi.org/10.1128/JVI.01248-09
  • Hoffmann, M., Hofmann-Winkler, H., Smith, J. C., Krüger, N., Arora, P., Sørensen, L. K., Søgaard, O. S., Hasselstrøm, J. B., Winkler, M., Hempel, T., Raich, L., Olsson, S., Danov, O., Jonigk, D., Yamazoe, T., Yamatsuta, K., Mizuno, H., Ludwig, S., Noé, F., … Pöhlmann, S. (2021). Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine, 65, 103255. https://doi.org/10.1016/j.ebiom.2021.103255
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e8. e278. https://doi.org/10.1016/j.cell.2020.02.052
  • Hu, B., Guo, H., Zhou, P., & Shi, Z. L. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews. Microbiology, 19(3), 141–154. https://doi.org/10.1038/s41579-020-00459-7
  • Jansook, P., Ogawa, N., & Loftsson, T. (2018). Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. International Journal of Pharmaceutics, 535(1-2), 272–284. https://doi.org/10.1016/j.ijpharm.2017.11.018
  • Jicsinszky, L., Martina, K., & Cravotto, G. (2021). Cyclodextrins in the antiviral therapy. Journal of Drug Delivery Science and Technology, 64, 102589. https://doi.org/10.1016/j.jddst.2021.102589
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Kalra, R. S., Kumar, V., Dhanjal, J. K., Garg, S., Li, X., Kaul, S. C., Sundar, D., & Wadhwa, R. (2021). COVID19-inhibitory activity of withanolides involves targeting of the host cell surface receptor ACE2: Insights from computational and biochemical assays. Journal of Biomolecular Structure & Dynamics, 40(17), 7885–7898. https://doi.org/10.1080/07391102.2021.1902858
  • Kumar, V., Dhanjal, J. K., Bhargava, P., Kaul, A., Wang, J., Zhang, H., Kaul, S. C., Wadhwa, R., & Sundar, D. (2022). Withanone and withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. Journal of Biomolecular Structure & Dynamics, 40(1), 1–13. https://doi.org/10.1080/07391102.2020.1775704
  • Kumar, V., Dhanjal, J. K., Kaul, S. C., Wadhwa, R., & Sundar, D. (2021). Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (M(pro)) of SARS-CoV-2 and inhibit its activity. Journal of Biomolecular Structure & Dynamics, 39(11), 3842–3854. https://doi.org/10.1080/07391102.2020.1772108
  • Kurkov, S. V., & Loftsson, T. (2013). Cyclodextrins. International Journal of Pharmaceutics, 453(1), 167–180. https://doi.org/10.1016/j.ijpharm.2012.06.055
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Lim, C. H., Rasti, B., Sulistyo, J., & Hamid, M. A. (2021). Comprehensive study on transglycosylation of CGTase from various sources. Heliyon, 7(2), e06305. https://doi.org/10.1016/j.heliyon.2021.e06305
  • Malik, V., Kumar, V., Kaul, S. C., Wadhwa, R., & Sundar, D. (2021). Potential of withaferin-A, withanone and caffeic acid phenethyl ester as ATP-competitive inhibitors of BRAF: A bioinformatics study. Current Research in Structural Biology, 3, 301–311. https://doi.org/10.1016/j.crstbi.2021.11.004
  • Meyerowitz, E. A., Richterman, A., Gandhi, R. T., & Sax, P. E. (2021). Transmission of SARS-CoV-2: A review of viral, host, and environmental factors. Annals of Internal Medicine, 174(1), 69–79. https://doi.org/10.7326/M20-5008
  • Nguyen, D. D., Gao, K., Chen, J., Wang, R., & Wei, G. W. (2020). Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 137 crystal structures using algebraic topology and deep learning. Chemical Science, 11(44), 12036–12046. https://doi.org/10.1039/d0sc04641h
  • Ni, W., Yang, X., Yang, D., Bao, J., Li, R., Xiao, Y., Hou, C., Wang, H., Liu, J., Yang, D., Xu, Y., Cao, Z., & Gao, Z. (2020). Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Critical Care (London, England), 24(1), 422. https://doi.org/10.1186/s13054-020-03120-0
  • Paolacci, S., Ceccarini, M. R., Codini, M., Manara, E., Tezzele, S., Percio, M., Capodicasa, N., Kroni, D., Dundar, M., Ergoren, M. C., Sanlidag, T., Beccari, T., Farronato, M., Farronato, G., Tartaglia, G. M., & Bertelli, M. (2020). Pilot study for the evaluation of safety profile of a potential inhibitor of SARS-CoV-2 endocytosis. Acta Bio-Medica: Atenei Parmensis, 91(13-S), e2020009. https://doi.org/10.23750/abm.v91i13-S.10583
  • Phan, T. (2020). Novel coronavirus: From discovery to clinical diagnostics. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 79, 104211. https://doi.org/10.1016/j.meegid.2020.104211
  • Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y., & Jung, S. H. (2016). An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. Journal of Medicinal Chemistry, 59(14), 6595–6628. https://doi.org/10.1021/acs.jmedchem.5b01461
  • Protein Preparation Wizard, Epik, Impact, Prime, LigPrep, Glide, Schrödinger, LLC, New York, NY. 2020. Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2020. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, 2020., Schrödinger Release 2020–3.
  • Ravaioli, S., Tebaldi, M., Fonzi, E., Angeli, D., Mazza, M., Nicolini, F., Lucchesi, A., Fanini, F., Pirini, F., Tumedei, M. M., Cerchione, C., Viale, P., Sambri, V., Martinelli, G., & Bravaccini, S. (2020). ACE2 and TMPRSS2 potential involvement in genetic susceptibility to SARS-COV-2 in cancer patients. Cell Transplantation, 29, 963689720968749. https://doi.org/10.1177/0963689720968749
  • Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., Dahlgren, M. K., Mondal, S., Chen, W., Wang, L., Abel, R., Friesner, R. A., & Harder, E. D. (2019). OPLS3e: Extending force field coverage for drug-like small molecules. Journal of Chemical Theory and Computation, 15(3), 1863–1874. https://doi.org/10.1021/acs.jctc.8b01026
  • Rosenbaum, A. I., & Maxfield, F. R. (2011). Niemann-pick type C disease: Molecular mechanisms and potential therapeutic approaches. Journal of Neurochemistry, 116(5), 789–795. https://doi.org/10.1111/j.1471-4159.2010.06976.x
  • Schrödinger, L.N.Y., NY, USA. (2020). Academic version of Desmond integrated with Schrödinger Maestro (1st ed.).
  • Szente, L., Singhal, A., Domokos, A., & Song, B. (2018). Cyclodextrins: Assessing the impact of cavity size, occupancy, and substitutions on cytotoxicity and cholesterol homeostasis. Molecules (Basel, Switzerland), 23(5), 1228. https://doi.org/10.3390/molecules23051228
  • Towler, P., Staker, B., Prasad, S. G., Menon, S., Tang, J., Parsons, T., Ryan, D., Fisher, M., Williams, D., Dales, N. A., Patane, M. A., & Pantoliano, M. W. (2004). ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. The Journal of Biological Chemistry, 279(17), 17996–18007. https://doi.org/10.1074/jbc.M311191200
  • Wang, Z., Wang, X., Li, Y., Lei, T., Wang, E., Li, D., Kang, Y., Zhu, F., & Hou, T. (2019). farPPI: A webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods. Bioinformatics (Oxford, England), 35(10), 1777–1779. https://doi.org/10.1093/bioinformatics/bty879
  • Wüpper, S., Lüersen, K., & Rimbach, G. (2021). Cyclodextrins, natural compounds, and plant bioactives-A nutritional perspective. Biomolecules, 11(3), 401. https://doi.org/10.3390/biom11030401
  • Yao, Y., Wang, H., & Liu, Z. (2020). Expression of ACE2 in airways: Implication for COVID-19 risk and disease management in patients with chronic inflammatory respiratory diseases. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology, 50(12), 1313–1324. https://doi.org/10.1111/cea.13746
  • Zang, R., Gomez Castro, M. F., McCune, B. T., Zeng, Q., Rothlauf, P. W., Sonnek, N. M., Liu, Z., Brulois, K. F., Wang, X., Greenberg, H. B., Diamond, M. S., Ciorba, M. A., Whelan, S. P. J., & Ding, S. (2020). TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Science Immunology, 5(47), eabc3582. https://doi.org/10.1126/sciimmunol.abc3582
  • Zanganeh, S., Goodarzi, N., Doroudian, M., & Movahed, E. (2022). Potential COVID-19 therapeutic approaches targeting angiotensin-converting enzyme 2; An updated review. Reviews in Medical Virology, 32(4), e2321. https://doi.org/10.1002/rmv.2321
  • Zhou, L., Xu, Z., Castiglione, G. M., Soiberman, U. S., Eberhart, C. G., Duh,., & E., J. (2020). ACE2 and TMPRSS2 are expressed on the human ocular surface, suggesting susceptibility to SARS-CoV-2 infection. The Ocular Surface, 18(4), 537–544. https://doi.org/10.1016/j.jtos.2020.06.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.