88
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of substrate specificity and catalytic promiscuity of Bacillus albus cellulase: an insight into in silico proteomic study aiming at enhanced production of renewable energy

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 09 May 2023, Accepted 11 Dec 2023, Published online: 21 Dec 2023

References

  • Antunes, D. A., Moll, M., Devaurs, D., Jackson, K. R., Lizée, G., & Kavraki, L. E. (2017). DINC 2.0: A new protein–peptide docking webserver using an incremental approach. Cancer Research, 77(21), e55–e57. https://doi.org/10.1158/0008-5472.CAN-17-0511
  • Bhatt, P., Deepthi, S., Kumar, C. R. S., & Jha, A. (2017). Facile synthesis, spectral studies, dft calculations and biological activities of novel ni (ii), cu (ii), and pd (ii) complexes of thiadiazole analogs. International Journal of Pharmacy and Pharmaceutical Sciences, 9(4), 185–192. https://doi.org/10.22159/ijpps.2017v9i4.17130
  • Bianchetti, C. M., Brumm, P., Smith, R. W., Dyer, K., Hura, G. L., Rutkoski, T. J., & Phillips, G. N. (2013). Structure, dynamics, and specificity of endoglucanase D from Clostridium cellulovorans. Journal of Molecular Biology, 425(22), 4267–4285. https://doi.org/10.1016/j.jmb.2013.05.030
  • Bornscheuer, U. T., Huisman, G. W., Kazlauskas, R. J., Lutz, S., Moore, J. C., & Robins, K. (2012). Engineering the third wave of biocatalysis. Nature, 485(7397), 185–194. https://doi.org/10.1038/nature11117
  • Burton, R. A., Gidley, M. J., & Fincher, G. B. (2010). Heterogeneity in the chemistry, structure and function of plant cell walls. Nature Chemical Biology, 6(10), 724–732. https://doi.org/10.1038/nchembio.439
  • Chen, Z., Friedland, G. D., Pereira, J. H., Reveco, S. A., Chan, R., Park, J. I., Thelen, M. P., Adams, P. D., Arkin, A. P., Keasling, J. D., Blanch, H. W., Simmons, B. A., Sale, K. L., Chivian, D., & Chhabra, S. R. (2012). Tracing determinants of dual substrate specificity in glycoside hydrolase family 5. The Journal of Biological Chemistry, 287(30), 25335–25343. https://doi.org/10.1074/jbc.M112.362640
  • Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16(22), 10881–10890. https://doi.org/10.1093/nar/16.22.10881
  • Darden, T., Perera, L., Li, L., & Pedersen, L. (1999). New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure, 7(3), R55–R60. https://doi.org/10.1016/s0969-2126(99)80033-1
  • Davids, T., Schmidt, M., Böttcher, D., & Bornscheuer, U. T. (2013). Strategies for the discovery and engineering of enzymes for biocatalysis. Current Opinion in Chemical Biology, 17(2), 215–220. https://doi.org/10.1016/j.cbpa.2013.02.022
  • de Melo-Minardi, R. C., Bastard, K., & Artiguenave, F. (2010). Identification of subfamily-specific sites based on active sites modeling and clustering. Bioinformatics, 26(24), 3075–3082. https://doi.org/10.1093/bioinformatics/btq595
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. San Carlos, CA: DeLano Scientific. http://www.pymol.org.
  • Dennington, I. R., Keith, T. A., & Millam, J. M. (2009). GaussView 5.0. https://doi.org/10.4236/oalib.1103172
  • Ejaz, U., Sohail, M., & Ghanemi, A. (2021). Cellulases: From bioactivity to a variety of industrial applications. Biomimetics, 6(3), 44. https://doi.org/10.3390/biomimetics6030044
  • Emsley, P., & Cowtan, K. (2004). Coot: Model-building tools for molecular graphics. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 12 Pt 1), 2126–2132. https://doi.org/10.1107/S0907444904019158
  • Eslami-Farsani, R., Shareghi, B., Farhadian, S., & Momeni, L. (2021). Experimental and theoretical investigations on the interaction of glucose molecules with myoglobin in the aqueous solution using theoretical and experimental methods. Journal of Biomolecular Structure & Dynamics, 39(17), 6384–6395. https://doi.org/10.1080/07391102.2020.1798283
  • Farajzadeh-Dehkordi, N., Farhadian, S., Zahraei, Z., Gholamian-Dehkordi, N. and Shareghi, B. (2021). Interaction of reactive Red195 with human serum albumin: Determination of the binding mechanism and binding site by spectroscopic and molecular modeling methods. Journal of Molecular Liquids, 52, 1214. https://doi.org/10.1016/j.molliq.2020.114835
  • Fernandes, J., Gattass, C. R. (2009) Topological polar surface area defines substrate transport by multidrug resistance associated protein 1 (MRP1/ABCC1). Journal of Medicinal Chemistry 52(4), 1214–1218.
  • Fokas, A. S., Cole, D. J., Ahnert, S. E., & Chin, A. W. (2016). Residue geometry networks: A rigidity-based approach to the amino acid network and evolutionary rate analysis. Scientific Reports, 6(1), 33213. https://doi.org/10.1038/srep33213
  • Foresman, J., & Frish, E. (1996). Exploring chemistry. Gaussian Inc.
  • Frisch, M. J. E. A. (2009). Gaussian 09 (Vol. 32, pp. 5648–5652). Gaussian, Inc.
  • Garg, R., Srivastava, R., Brahma, V., Verma, L., Karthikeyan, S., & Sahni, G. (2016). Biochemical and structural characterization of a novel halotolerant cellulase from soil metagenome. Scientific Reports, 6(1), 39634. https://doi.org/10.1038/srep39634
  • Guérin, D. M. A., Lascombe, M.-B., Costabel, M., Souchon, H., Lamzin, V., Béguin, P., & Alzari, P. M. (2002). Atomic (0.94 Å) resolution structure of an inverting glycosidase in complex with substrate. Journal of Molecular Biology, 316(5), 1061–1069. https://doi.org/10.1006/jmbi.2001.5404
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Himmel, M. E., Ding, S.-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807. https://doi.org/10.1126/science.1137016
  • Himmel, M. E., & Himmel, M. E. (2008). Biomass recalcitrance: Deconstructing the plant cell wall for bioenergy. Blackwell.
  • Horn, S. J., Sikorski, P., Cederkvist, J. B., Vaaje-Kolstad, G., Sørlie, M., Synstad, B., Vriend, G., Vårum, K. M., & Eijsink, V. G. (2006). Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18089–18094. https://doi.org/10.1073/pnas.0608909103
  • Katouno, F., Taguchi, M., Sakurai, K., Uchiyama, T., Nikaidou, N., Nonaka, T., Sugiyama, J., & Watanabe, T. (2004). Importance of exposed aromatic residues in chitinase B from Serratia marcescens 2170 for crystalline chitin hydrolysis. Journal of Biochemistry, 136(2), 163–168. https://doi.org/10.1093/jb/mvh105
  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
  • Kurniawan, D. W., Storm, G., Prakash, J., & Bansal, R. (2020). Role of spleen tyrosine kinase in liver diseases. World Journal of Gastroenterology, 26(10), 1005–1019. https://doi.org/10.3748/wjg.v26.i10.1005
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science: A Publication of the Protein Society, 27(1), 129–134. https://doi.org/10.1002/pro.3289
  • Le Guilloux, V., Schmidtke, P., & Tuffery, P. (2009). Fpocket: An open source platform for ligand pocket detection. BMC Bioinformatics, 10(1), 168. https://doi.org/10.1186/1471-2105-10-168
  • Lee, D., Redfern, O., & Orengo, C. (2007). Predicting protein function from sequence and structure. Nature Reviews. Molecular Cell Biology, 8(12), 995–1005. https://doi.org/10.1017/s0033583503003901
  • Lin, L., Yan, R., Liu, Y., & Jiang, W. (. (2010). In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: Cellulose, hemicellulose and lignin. Bioresource Technology, 101(21), 8217–8223. https://doi.org/10.1016/j.biortech.2010.05.084
  • Lindahl, E., Azuara, C., Koehl, P., & Delarue, M. (2006). NOMAD-Ref: Visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Research, 34(Web Server issue), W52–W56. https://doi.org/10.1093/nar/gkl082
  • Lucas, M. C., Bhagirath, N., Chiao, E., Goldstein, D. M., Hermann, J. C., Hsu, P.-Y., Kirchner, S., Kennedy-Smith, J. J., Kuglstatter, A., Lukacs, C., Menke, J., Niu, L., Padilla, F., Peng, Y., Polonchuk, L., Railkar, A., Slade, M., Soth, M., Xu, D., … Liao, C. (2014). Using ovality to predict nonmutagenic, orally efficacious pyridazine amides as cell specific spleen tyrosine kinase inhibitors. Journal of Medicinal Chemistry, 57(6), 2683–2691. https://doi.org/10.1021/jm401982j
  • Mitra, D. (2018). Quantum mechanical descriptors of nilotinib’s impurities. Quantum, 6(1), 1–8.
  • Mitra, D., & Bose, A. (2021). Remarkable effect of natural compounds that have therapeutic effect to stop COVID-19. Recent Advances in Pharmaceutical Sciences, 115–126.
  • Mitra, D., Dey, A., Biswas, I., & Das Mohapatra, P. K. (2021). Bioactive compounds as a potential inhibitor of colorectal cancer; an in silico study of Gallic acid and Pyrogallol. Iranian Journal of Colorectal Research, 9(1), 32–39. https://doi.org/10.30476/acrr.2021.89642.1080
  • Mitra, D., Paul, M., Thatoi, H., & Mohapatra, P. K. (2021). Study of potentiality of dexamethasone and its derivatives against Covid-19. Journal of Biomolecular Structure & Dynamics, 40(20), 10239–10249. https://doi.org/10.1080/07391102.2021.1942210
  • Miyamoto, S., & Kollman, P. A. (1992). SETTLE: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Mohammadi, M., Shareghi, B., Farhadian, S., & Saboury, A. A. (2021). The effect of sorbitol on the structure and activity of carboxypeptidase A: Insights from a spectroscopic and computational approach. Journal of Molecular Liquids, 330, 115710. https://doi.org/10.1016/j.molliq.2021.115710
  • Nakamura, A., Watanabe, H., Ishida, T., Uchihashi, T., Wada, M., Ando, T., Igarashi, K., & Samejima, M. (2014). Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose. Journal of the American Chemical Society, 136(12), 4584–4592. https://doi.org/10.1021/ja4119994
  • Páll, S., Abraham, M. J., Kutzner, C., Hess, B., & Lindahl, E. (2015). Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In International conference on exascale applications and software (pp. 3–27). Springer. https://doi.org/10.1007/978-3-319-15976-8_1
  • Patel, A. K., Singhania, R. R., Sim, S. J., & Pandey, A. (2019). Thermostable cellulases: Current status and perspectives. Bioresource Technology, 279, 385–392. https://doi.org/10.1016/j.biortech.2019.01.049
  • Paul, M., Das Mohapatra, P. K., & Thatoi, H. (2023). Purified cellulase‐mediated simultaneous sugar utilization by Bacillus albus isolated from Similipal, Odisha, India. Journal of Basic Microbiology, 63(7), 759–780. https://doi.org/10.1002/jobm.202300006
  • Paul, M., Mohapatra, S., Mohapatra, P. K. D., & Thatoi, H. (2021). Microbial cellulases–An update towards its surface chemistry, genetic engineering and recovery for its biotechnological potential. Bioresource Technology, 340, 125710. https://doi.org/10.1016/j.biortech.2021.125710
  • Paul, M., Panda, G., Mohapatra, P. K. D., & Thatoi, H. (2020). Study of structural and molecular interaction for the catalytic activity of cellulases: An insight in cellulose hydrolysis for higher bioethanol yield. Journal of Molecular Structure, 1204p., 127547. https://doi.org/10.1016/j.molstruc.2019.127547
  • Paul, M., Panda, M. K., & Thatoi, H. (2018). Developing Hispolon-based novel anticancer therapeutics against human (NF-κβ) using in silico approach of modelling, docking and protein dynamics. Journal of Biomolecular Structure & Dynamics, 37(15), 3947–3967. https://doi.org/10.1080/07391102.2018.1532321
  • Pedretti, A., Mazzolari, A., & Vistoli, G. (2008). VEGA ZZ: A versatile toolkit for drug design and protein modelling. In Congreso de FisicoquímicaTeórica y Computacional, https://doi.org/10.1016/S1093-3263(02)00123-7
  • Pérez, J., Muñoz-Dorado, J., de la Rubia, T., & Martínez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5(2), 53–63. https://doi.org/10.1007/s10123-002-0062-3
  • Piovesan, D., Minervini, G., & Tosatto, S. C. E. (2016). The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Research, 44(W1), W367–W374. http://protein.bio.unipd.it/ring/. https://doi.org/10.1093/nar/gkw315
  • Prates, É. T., Stankovic, I., Silveira, R. L., Liberato, M. V., Henrique-Silva, F., Pereira, N., Polikarpov, I., & Skaf, M. S. (2013). X-ray structure and molecular dynamics simulations of endoglucanase 3 from Trichoderma harzianum: Structural organization and substrate recognition by endoglucanases that lack cellulose binding module. PloS One, 8(3), e59069. https://doi.org/10.1371/journal.pone.0059069
  • Raeessi-Babaheydari, E., Farhadian, S., & Shareghi, B. (2021). Evaluation of interaction between citrus flavonoid, naringenin, and pepsin using spectroscopic analysis and docking simulation. Journal of Molecular Liquids, 339, 116763. https://doi.org/10.1016/j.molliq.2021.116763
  • Rausell, A., Juan, D., Pazos, F., & Valencia, A. (2010). Protein interactions and ligand binding: From protein subfamilies to functional specificity. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 1995–2000. https://doi.org/10.1073/pnas.0908044107
  • Sadeghi-Kaji, S., Shareghi, B., Saboury, A. A., & Farhadian, S. (2020). Investigating the interaction of porcine pancreatic elastase and propanol: A spectroscopy and molecular simulation study. International Journal of Biological Macromolecules, 146, 687–691. https://doi.org/10.1016/j.ijbiomac.2019.12.119
  • Scapin, S. M. N., Souza, F. H. M., Zanphorlin, L. M., de Almeida, T. S., Sade, Y. B., Cardoso, A. M., Pinheiro, G. L., & Murakami, M. T. (2017). Structure and function of a novel GH8 endoglucanase from the bacterial cellulose synthase complex of Raoultella ornithinolytica. PloS One, 12(4), e0176550. https://doi.org/10.1371/journal.pone.0176550
  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research, 33(Web Server issue), W363–W367. https://doi.org/10.1093/nar/gki481
  • Selvam, K., Senbagam, D., Selvankumar, T., Sudhakar, C., Kamala-Kannan, S., Senthilkumar, B., & Govarthanan, M. (2017). Cellulase enzyme: Homology modeling, binding site identification and molecular docking. J Mol Struct,.1150, 61–67. https://doi.org/10.1016/j.molstruc.2017.08.067
  • Sujatha, M. S., & Balaji, P. V. (2004). Identification of common structural features of binding sites in galactose-specific proteins. Proteins, 55(1), 44–65. https://doi.org/10.1002/prot.10612
  • Thatoi, H., Mohapatra, S., Paul, M., Behera, S., & Mahuri, M. (2023). Improvement of saccharification of native grass, Pennisetum sp. using cellulase from isolated Aspergillus fumigatus for bioethanol production: An insight into in silico molecular modelling, docking and dynamics studies. Systems Microbiology and Biomanufacturing, 3(3), 394–413. https://doi.org/10.1007/s43393-022-00114-7
  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina, Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Uchiyama, T., Uchihashi, T., Nakamura, A., Watanabe, H., Kaneko, S., Samejima, M., & Igarashi, K. (2020). Convergent evolution of processivity in bacterial and fungal cellulases. Proceedings of the National Academy of Sciences of the United States of America, 117(33), 19896–19903. https://doi.org/10.1073/pnas.2011366117
  • van Gunsteren, W. F. (1996). Biomolecular simulation: The GROMOS96 manual and user guide (Vol. 86, pp. 1–1044). Vdf Hochschulverlag AG an der ETH Zürich.
  • Vaught, A. (1996). Graphing with Gnuplot and Xmgr: Two graphing packages available under linux. Linux Journal, 1996(28es), 7–es.
  • Wang, K., Cao, R., Wang, M., Lin, Q., Zhan, R., Xu, H., & Wang, S. (2019). A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic Bacillus strain exhibiting significant synergy with commercial Celluclast 1.5 L in pretreated corn stover hydrolysis. Biotechnology for Biofuels, 12(1), 48. https://doi.org/10.1186/s13068-019-1389-8
  • Wang, W., Archbold, T., Lam, J. S., Kimber, M. S., & Fan, M. Z. (2019). A processive endoglucanase with multi-substrate specificity is characterized from porcine gut microbiota. Scientific Reports, 9(1), 13630. https://doi.org/10.1038/s41598-019-50050-1
  • Wang, Z., Pan, H., Sun, H., Kang, Y., Liu, H., Cao, D., & Hou, T. (2022). fastDRH: A webserver to predict and analyze protein-ligand complexes based on molecular docking and MM/PB(GB)SA computation. Briefings in Bioinformatics, 23(5), bbac201. https://doi.org/10.1093/bib/bbac201
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Weber, W., Hünenberger, P. H., & McCammon, J. A. (2000). Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: Influence of artificial periodicity on peptide conformation. The Journal of Physical Chemistry B, 104(15), 3668–3675. https://doi.org/10.1021/jp9937757
  • Wilson, D. B. (2009). Cellulases and biofuels. Current Opinion in Biotechnology, 20(3), 295–299. https://doi.org/10.1016/j.copbio.2009.05.007
  • Wita, A., Białas, W., Wilk, R., Szychowska, K., & Czaczyk, K. (2019). The influence of temperature and nitrogen source on cellulolytic potential of microbiota isolated from natural environment. Polish Journal of Microbiology, 68(1), 105–114. https://doi.org/10.21307/pjm-2019-012
  • Zakariassen, H., Aam, B. B., Horn, S. J., Vårum, K. M., Sørlie, M., & Eijsink, V. G. H. (2009). Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency. The Journal of Biological Chemistry, 284(16), 10610–10617. https://doi.org/10.1074/jbc.M900092200
  • Zhang, Y. H. P., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 24(5), 452–481. https://doi.org/10.1016/j.biotechadv.2006.03.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.