15
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Underlying features for the enhanced electrostatic strength of the extremophilic malate dehydrogenase interface salt-bridge compared to the mesophilic one

, , &
Received 13 Jul 2023, Accepted 20 Oct 2023, Published online: 26 Dec 2023

References

  • Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science (New York, N.Y.), 181(4096), 223–230. https://doi.org/10.1126/science.181.4096.223
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10037–10041. https://doi.org/10.1073/pnas.181342398
  • Bandyopadhyay, A. K., & Sonawat, H. M. (2000). Salt dependent stability and unfolding of [Fe2–S2] ferredoxin of Halobacterium salinarum: Spectroscopic investigations. Biophysical Journal, 79(1), 501–510. https://doi.org/10.1016/S0006-3495(00)76312-0
  • Bandyopadhyay, A. K., Islam, R. N. U., Mitra, D., Banerjee, S., & Goswami, A. (2019a). Analysis of salt-bridges in prolyl oligopeptidase from Pyrococcus furiosus and Homo sapiens. Bioinformation, 15(3), 214–225. https://doi.org/10.6026/97320630015214
  • Bandyopadhyay, A. K., Islam, R. N. U., & Hazra, N. (2020). Salt-bridges in the microenvironment of stable protein structures. Bioinformation, 16(11), 900–909. https://doi.org/10.6026/97320630016900
  • Bandyopadhyay, A. K., Islam, R. N. U., Mitra, D., Banerjee, S., & Goswami, A. (2019b). Stability of buried and networked salt-bridges (BNSB) in thermophilic proteins. Bioinformation, 15(1), 61–67. https://doi.org/10.6026/97320630015061
  • Bandyopadhyay, A. K., Islam, R. N. U., Mitra, D., Banerjee, S., Yasmeen, S., & Goswami, A. (2019c). Insight into the salt bridge of malate dehydrogenase from Halobacterium salinarum and Escherichia coli. Bioinformation, 15(2), 95–103. https://doi.org/10.6026/97320630015095
  • Bandyopadhyay, A. K., Krishnamoorthy, G., & Sonawat, H. M. (2001). Structural stabilization of [2Fe–2S] ferredoxin from Halobacterium salinarum. Biochemistry, 40(5), 1284–1292. https://doi.org/10.1021/bi001614j
  • Bandyopadhyay, A. K., Krishnamoorthy, G., Padhy, L. C., & Sonawat, H. M. (2007). Kinetics of salt-dependent unfolding of [2Fe–2S] ferredoxin of Halobacterium salinarum. Extremophiles: Life under Extreme Conditions, 11(4), 615–625. https://doi.org/10.1007/s00792-007-0075-0
  • Banerjee, S., Gupta, P. S. S., Islam, R. N. U., & Bandyopadhyay, A. K. (2021). Intrinsic basis of thermostability of prolyl oligopeptidase from Pyrococcus furiosus. Scientific Reports, 11(1), 11553. https://doi.org/10.1038/s41598-021-90723-4
  • Banerjee, S., Gupta, P. S. S., Nayek, A., Das, S., Sur, V. P., Seth, P., Islam, R. N. U., & Bandyopadhyay, A. K. (2015). PHYSICO2: An UNIX based standalone procedure for computation of physicochemical, window-dependent and substitution based evolutionary properties of protein sequences along with automated block preparation tool, version 2. Bioinformation, 11(7), 366–368. https://doi.org/10.6026/97320630011366
  • Barlow, D. J., & Thornton, J. M. (1983). Ion-pairs in proteins. Journal of Molecular Biology, 168(4), 867–885. https://doi.org/10.1016/s0022-2836(83)80079-5
  • Benesch, R. E., Benesch, R., & Macduff, G. (1964). The dissociation of hemoglobins A and H in concentrated sodium chloride. Biochemistry, 3(8), 1132–1135. https://doi.org/10.1021/bi00896a021
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, IN., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Betts, M. J., & Russell, R. B. (2003). Amino acid properties and consequences of substitutions. Bioinformatics for Geneticists, 317, 289.
  • Bhattacharyya, R., Samanta, U., & Chakrabarti, P. (2002). Aromatic–aromatic interactions in and around α-helices. Protein Engineering, 15(2), 91–100. https://doi.org/10.1093/protein/15.2.91
  • Biswas, I., Mitra, D., Bandyopadhyay, A. K., & Mohapatra, P. K. (2020). Contributions of protein microenvironment in tannase industrial applicability: An in-silico comparative study of pathogenic and non-pathogenic bacterial tannase. Heliyon, 6(11), e05359. https://doi.org/10.1016/j.heliyon.2020.e05359
  • Blasie, C. A., & Berg, J. M. (2004). Entropy − enthalpy compensation in ionic interactions probed in a zinc finger peptide. Biochemistry, 43(32), 10600–10604. https://doi.org/10.1021/bi0363230
  • Bonneté, F., Ebel, C., Zaccai, G., & Eisenberg, H. (1993). Biophysical study of halophilic malate dehydrogenase in solution: Revised subunit structure and solvent interactions of native and recombinant enzyme. Journal of the Chemical Society, Faraday Transactions. 89(15), 2659–2666. https://doi.org/10.1039/FT9938902659
  • Bonneté, F., Madern, D., & Zaccaï, G. (1994). Stability against denaturation mechanisms in halophilic malate dehydrogenase “adapt” to solvent conditions. Journal of Molecular Biology, 244(4), 436–447. https://doi.org/10.1006/jmbi.1994.1741
  • Bosshard, H. R., Marti, D. N., & Jelesarov, I. (2004). Protein stabilization by salt bridges: Concepts, experimental approaches and clarification of some misunderstandings. Journal of Molecular Recognition: JMR, 17(1), 1–16. https://doi.org/10.1002/jmr.657
  • Buck, M., Bouguet-Bonnet, S., Pastor, R. W., & MacKerell, A. D. (2006). Importance of the CMAP correction to the CHARMM22 protein force field: Dynamics of hen lysozyme. Biophysical Journal, 90(4), L36–L38. https://doi.org/10.1529/biophysj.105.078154
  • Chothia, C., & Janin, J. (1975). Principles of protein–protein recognition. Nature, 256(5520), 705–708. https://doi.org/10.1038/256705a0
  • DeLano, W. L., Ultsch, M. H., de Vos, A. M., & Wells, J. A. (2000). Convergent solutions to binding at a protein–protein interface. Science (New York, N.Y.), 287(5456), 1279–1283. https://doi.org/10.1126/science.287.5456.1279
  • Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., & Baker, N. A. (2004). PDB2PQR: An automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Research, 32(Web Server issue), W665–W667. https://doi.org/10.1093/nar/gkh381
  • Dong, F., Olsen, B., & Baker, N. A. (2008). Computational methods for biomolecular electrostatics. Methods in Cell Biology, 84, 843–870.
  • Dym, O., Mevarech, M., & Sussman, J. L. (1995). Structural features that stabilize halophilic malate dehydrogenase from an Archaebacterium. Science (New York, N.Y.), 267(5202), 1344–1346. https://doi.org/10.1126/science.267.5202.1344
  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340
  • Fogolari, F., Brigo, A., & Molinari, H. (2002). The Poisson–Boltzmann equation for biomolecular electrostatics: A tool for structural biology. Journal of Molecular Recognition: JMR, 15(6), 377–392. https://doi.org/10.1002/jmr.577
  • Forastieri, H., & Ingham, K. C. (1982). Thermal stability of human chorionic gonadotropin. Reversible dissociation of subunits at neutral pH. The Journal of Biological Chemistry, 257(14), 7976–7981. https://doi.org/10.1016/S0021-9258(18)34284-4
  • Grütter, M. G., Hawkes, R. B., & Matthews, B. W. (1979). Molecular basis of thermostability in the lysozyme from bacteriophage T4. Nature, 277(5698), 667–669. https://doi.org/10.1038/277667a0
  • Guharoy, M., Pal, A., Dasgupta, M., & Chakrabarti, P. (2011). PRICE (PRotein Interface Conservation and Energetics): A server for the analysis of protein–protein interfaces. Journal of Structural and Functional Genomics, 12(1), 33–41. https://doi.org/10.1007/s10969-011-9108-0
  • Gupta, P. S. S., Mondal, S., Mondal, B., Islam, R. N. U., Banerjee, S., & Bandyopadhyay, A. K. (2014). SBION: A program for analyses of salt-bridges from multiple structure files. Bioinformation, 10(3), 164–166. https://doi.org/10.6026/97320630010164
  • Gupta, P. S. S., Nayek, A., Banerjee, S., Seth, P., Das, S., Sur, V. P., Roy, C., & Bandyopadhyay, A. K. (2015). SBION2: Analyses of salt bridges from multiple structure files, version 2. Bioinformation, 11(1), 39–42. https://doi.org/10.6026/97320630011039
  • He, Y. M., & Ma, B. G. (2016). Abundance and temperature dependency of protein–protein interaction revealed by interface structure analysis and stability evolution. Scientific Reports, 6(1), 26737. https://doi.org/10.1038/srep26737
  • Hendsch, Z. S., & Tidor, B. (1994). Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Science: A Publication of the Protein Society, 3(2), 211–226. https://doi.org/10.1002/pro.5560030206
  • Huang, M., Rigby, A. C., Morelli, X., Grant, M. A., Huang, G., Furie, B., Seaton, B., & Furie, B. C. (2003). Structural basis of membrane binding by Gla domains of vitamin K–dependent proteins. Nature Structural Biology, 10(9), 751–756. https://doi.org/10.1038/nsb971
  • Hubbard, S. J. (1992). NACCESS: Program for Calculating Accessibilities. University College of London.
  • Imanaka, T., Shibazaki, M., & Takagi, M. (1986). A new way of enhancing the thermostability of proteases. Nature, 324(6098), 695–697. https://doi.org/10.1038/324695a0
  • Johansson, M. U., Zoete, V., Michielin, O., & Guex, N. (2012). Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinformatics, 13(1), 173. https://doi.org/10.1186/1471-2105-13-173
  • Jones, S., & Thornton, J. M. (1995). Protein–protein interactions: A review of protein dimer structures. Progress in Biophysics and Molecular Biology, 63(1), 31–65. https://doi.org/10.1016/0079-6107(94)00008-w
  • Jones, S., Marin, A., & Thornton, J. M. (2000). Protein domain interfaces: Characterization and comparison with oligomeric protein interfaces. Protein Engineering, 13(2), 77–82. https://doi.org/10.1093/protein/13.2.77
  • Kamerzell, T. J., & Middaugh, C. R. (2008). The complex interrelationships between protein flexibility and stability. Journal of Pharmaceutical Sciences, 97(9), 3494–3517. https://doi.org/10.1002/jps.21269
  • Kawahara, K., Kirshner, A. G., & Tanford, C. (1965). Dissociation of human CO-hemoglobin by urea, guanidine hydrochloride, and other reagents. Biochemistry, 4(7), 1203–1213. https://doi.org/10.1021/bi00883a001
  • Kawakami, R., Sakuraba, H., Goda, S., Tsuge, H., & Ohshima, T. (2009). Refolding, characterization and crystal structure of (S)-malate dehydrogenase from the hyperthermophilic Archaeon Aeropyrum pernix. Biochimica et Biophysica Acta, 1794(10), 1496–1504. https://doi.org/10.1016/j.bbapap.2009.06.014
  • Kelly, C. A., Nishiyama, M., Ohnishi, Y., Beppu, T., & Birktoft, J. J. (1993). Determinants of protein thermostability observed in the 1.9-. ANG. crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus. Biochemistry, 32(15), 3913–3922. https://doi.org/10.1021/bi00066a010
  • Keskin, O., Ma, B., & Nussinov, R. (2005). Hot regions in protein–protein interactions: The organization and contribution of structurally conserved hot spot residues. Journal of Molecular Biology, 345(5), 1281–1294. https://doi.org/10.1016/j.jmb.2004.10.077
  • Kumar, S., & Nussinov, R. (1999). Salt bridge stability in monomeric proteins. Journal of Molecular Biology, 293(5), 1241–1255. https://doi.org/10.1006/jmbi.1999.3218
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132. https://doi.org/10.1016/0022-2836(82)90515-0
  • Lanyi, J. K. (1974). Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriological Reviews, 38(3), 272–290. https://doi.org/10.1128/br.38.3.272-290.1974
  • Levin, K. B., Dym, O., Albeck, S., Magdassi, S., Keeble, A. H., Kleanthous, C., & Tawfik, D. S. (2009). Following evolutionary paths to protein–protein interactions with high affinity and selectivity. Nature Structural & Molecular Biology, 16(10), 1049–1055. https://doi.org/10.1038/nsmb.1670
  • Li, Y., Li, H., Yang, F., Smith-Gill, S. J., & Mariuzza, R. A. (2003). X-ray snapshots of the maturation of an antibody response to a protein antigen. Nature Structural Biology, 10(6), 482–488. https://doi.org/10.1038/nsb930
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268
  • Madigan, M. T., & Oren, A. (1999). Thermophilic and halophilic extremophiles. Current Opinion in Microbiology, 2(3), 265–269. https://doi.org/10.1016/s1369-5274(99)80046-0
  • Matsumura, M., Yasumura, S., & Aiba, S. (1986). Cumulative effect of intragenic amino-acid replacements on the thermostability of a protein. Nature, 323(6086), 356–358. https://doi.org/10.1038/323356a0
  • Mbaye, M. N., Hou, Q., Basu, S., Teheux, F., Pucci, F., & Rooman, M. (2019). A comprehensive computational study of amino acid interactions in membrane proteins. Scientific Reports, 9(1), 12043. https://doi.org/10.1038/s41598-019-48541-2
  • Meuzelaar, H., Vreede, J., & Woutersen, S. (2016). Influence of Glu/Arg, Asp/Arg, and Glu/Lys salt bridges on α-helical stability and folding kinetics. Biophysical Journal, 110(11), 2328–2341. https://doi.org/10.1016/j.bpj.2016.04.015
  • Mitra, D., Bandyopadhyay, A. K., Islam, R. N. U., Banerjee, S., Yasmeen, S., & Mohapatra, P. K. D. (2019). Structure, salt-bridge’s energetics and microenvironments of nucleoside diphosphate kinase from halophilic, thermophilic and mesophilic microbes. In Biotechnology and Biological Sciences: Proceedings of the 3rd International Conference of Biotechnology and Biological Sciences (BIOSPECTRUM 2019), August 8–10, 2019 (p. 107). CRC Press. https://doi.org/10.1201/9781003001614
  • Moreira, I. S., Fernandes, P. A., & Ramos, M. J. (2007). Hot spots—A review of the protein–protein interface determinant amino‐acid residues. Proteins, 68(4), 803–812. https://doi.org/10.1002/prot.21396
  • Nagy, B., & Jencks, W. P. (1965). Depolymerization of F-Actin by concentrated solutions of salts and denaturing agents. Journal of the American Chemical Society, 87(11), 2480–2488. https://doi.org/10.1021/ja01089a030
  • Nayek, A., Banerjee, S., Gupta, P., Sur, B., Seth, P., Das, S., Baker, N., & Bandyopadhyay, A. K. (2015a). ADSETMEAS: Automated determination of salt-bridge energy terms and micro environment from atomic structures using APBS method, version 1.0: PI-072. Protein Science, 24, 216–217.
  • Nayek, A., Gupta, P. S. S., Banerjee, S., Mondal, B., & Bandyopadhyay, A. K. (2014). Salt-bridge energetics in halophilic proteins. PloS One, 9(4), e93862. https://doi.org/10.1371/journal.pone.0093862
  • Nayek, A., Gupta, P. S. S., Banerjee, S., Sur, V. P., Seth, P., Das, S., Islam, R. N. U., & Bandyopadhyay, A. K. (2015b). ADSBET2: Automated determination of salt-bridge energy-terms version 2. Bioinformation, 11(8), 413–415. https://doi.org/10.6026/97320630011413
  • Nayek, A., Gupta, P. S., Banerjee, S., Das, S., Sur, V. P., Seth, P., Islam, R. N. U., & Bandyopadhyay, A. K. (2015c). ADSBET: Automated determination of salt-bridge energy terms. International Journal of Institutional Pharmacy and Life Sciences, 5, 28–36.
  • Nicholson, H., Becktel, W. J., & Matthews, B. W. (1988). Enhanced protein thermostability from designed mutations that interact with α-helix dipoles. Nature, 336(6200), 651–656. https://doi.org/10.1038/336651a0
  • Nishi, H., & Ota, M. (2010). Amino acid substitutions at protein–protein interfaces that modulate the oligomeric state. Proteins, 78(6), 1563–1574. https://doi.org/10.1002/prot.22673
  • Nooren, I. M., & Thornton, J. M. (2003). Diversity of protein–protein interactions. The EMBO Journal, 22(14), 3486–3492. https://doi.org/10.1093/emboj/cdg359
  • Perutz, M. F. (1978). Electrostatic effects in proteins. Science (New York, N.Y.), 201(4362), 1187–1191. https://doi.org/10.1126/science.694508
  • Perutz, M. F., & Raidt, H. (1975). Stereochemical basis of heat stability in bacterial ferredoxins and in hemoglobin A2. Nature, 255(5505), 256–259. https://doi.org/10.1038/255256a0
  • Piera-Velázquez, S., Marhuenda-Egea, F., & Cadenas, E. (2002). Increased stability of malate dehydrogenase from Halobacterium salinarum at low salt concentration in reverse micelles. Extremophiles: Life under Extreme Conditions, 6(5), 407–412. https://doi.org/10.1007/s00792-002-0272-9
  • Sen Gupta, P. S., Banerjee, S., & Bandyopadhyay, A. K. (2013). Sequence, structural and functional characterization of homogentisate-1, 2-dioxygenase of Homo sapiens: An in silico analysis. American Journal of Bioinformatics Research, 3, 42–61.
  • Sinha, N., & Smith-Gill, S. J. (2002). Electrostatics in protein binding and function. Current Protein & Peptide Science, 3(6), 601–614. https://doi.org/10.2174/1389203023380431
  • Teague, S. J. (2003). Implications of protein flexibility for drug discovery. Nature Reviews. Drug Discovery, 2(7), 527–541. https://doi.org/10.1038/nrd1129
  • UniProt Consortium. (2007). The universal protein resource (UniProt). Nucleic Acids Research. 36, D190–D195.
  • Unni, S., Huang, Y., Hanson, R. M., Tobias, M., Krishnan, S., Li, W. W., Nielsen, J. E., & Baker, N. A. (2011). Web servers and services for electrostatics calculations with APBS and PDB2PQR. Journal of Computational Chemistry, 32(7), 1488–1491. https://doi.org/10.1002/jcc.21720
  • Vieille, C., & Zeikus, G. J. (2001). Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews: MMBR, 65(1), 1–43. https://doi.org/10.1128/MMBR.65.1.1-43.2001
  • Vizcarra, C. L., Zhang, N., Marshall, S. A., Wingreen, N. S., Zeng, C., & Mayo, S. L. (2008). An improved pairwise decomposable finite‐difference Poisson–Boltzmann method for computational protein design. Journal of Computational Chemistry, 29(7), 1153–1162. https://doi.org/10.1002/jcc.20878
  • Von Hippel, P. H., & Wong, K. Y. (1964). Neutral salts: The generality of their effects on the stability of macromolecular conformations. Science (New York, N.Y.), 145(3632), 577–580. https://doi.org/10.1126/science.145.3632.577
  • Wells, J. A., & McClendon, C. L. (2007). Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature, 450(7172), 1001–1009. https://doi.org/10.1038/nature06526
  • Williams, R. W., Chang, A., Juretić, D., & Loughran, S. (1987). Secondary structure predictions and medium range interactions. Biochimica et Biophysica Acta, 916(2), 200–204. https://doi.org/10.1016/0167-4838(87)90109-9
  • Woodcock, J. M., Goodwin, K. L., Sandow, J. J., Coolen, C., Perugini, M. A., Webb, A. I., Pitson, S. M., Lopez, A. F., & Carver, J. A. (2018). Role of salt bridges in the dimer interface of 14-3-3ζ in dimer dynamics, N-terminal α-helical order, and molecular chaperone activity. The Journal of Biological Chemistry, 293(1), 89–99. https://doi.org/10.1074/jbc.M117.801019
  • Wrba, A., Schweiger, A., Schultes, V., Jaenicke, R., & Závodszky, P. (1990). Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochemistry, 29(33), 7584–7592. https://doi.org/10.1021/bi00485a007
  • Xu, G. Y., Yu, H. A., Hong, J., Stahl, M., McDonagh, T., Kay, L. E., & Cumming, D. A. (1997). Solution structure of recombinant human interleukin-6. Journal of Molecular Biology, 268(2), 468–481. https://doi.org/10.1006/jmbi.1997.0933
  • Yan, C., Wu, F., Jernigan, R. L., Dobbs, D., & Honavar, V. (2008). Characterization of protein–protein interfaces. The Protein Journal, 27(1), 59–70. https://doi.org/10.1007/s10930-007-9108-x
  • Yang, X., Lee, W. H., Sobott, F., Papagrigoriou, E., Robinson, C. V., Grossmann, J. G., Sundström, M., Doyle, D. A., & Elkins, J. M. (2006). Structural basis for protein–protein interactions in the 14-3-3 protein family. Proceedings of the National Academy of Sciences of the United States of America, 103(46), 17237–17242. https://doi.org/10.1073/pnas.0605779103
  • Zaitseva, J., Meneely, K. M., & Lamb, A. L. (2009). Structure of Escherichia coli malate dehydrogenase at 1.45 Å resolution. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 65(Pt 9), 866–869. https://doi.org/10.1107/S1744309109032217
  • Zielenkiewicz, P., & Saenger, W. (1992). Residue solvent accessibilities in the unfolded polypeptide chain. Biophysical Journal, 63(6), 1483–1486. https://doi.org/10.1016/S0006-3495(92)81746-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.