122
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of a set of flavonoid compounds as Helicobacter pylori urease inhibitors: insights from in silico studies

, &
Received 10 Jun 2023, Accepted 26 Aug 2023, Published online: 28 Dec 2023

References

  • Ahmad, M., Muhammad, N., Ahmad, M., Arif Lodhi, M., Jehan, N., Khan, Z., Ranjit, R., Shaheen, F., & Iqbal Choudhary, M. (2008). Urease inhibitor from Datisca cannabina linn. Journal of Enzyme Inhibition and Medicinal Chemistry, 23(3), 386–390. https://doi.org/10.1080/14756360701536513
  • Al-Rooqi, M. M., Mughal, E. U., Raja, Q. A., Hussein, E. M., Naeem, N., Sadiq, A., Asghar, B. H., Moussa, Z., & Ahmed, S. A. (2023). Flavonoids and related privileged scaffolds as potential urease inhibitors: A review. RSC Advances, 13(5), 3210–3233. https://doi.org/10.1039/d2ra08284e
  • Amieva, M., & Peek, R. M. Jr, (2016). Pathobiology of Helicobacter pylori–induced gastric cancer. Gastroenterology, 150(1), 64–78. https://doi.org/10.1053/j.gastro.2015.09.004
  • Amtul, Z., Rahman, A.-U., Siddiqui, R. A., & Choudhary, M. I. (2002). Chemistry and mechanism of urease inhibition. Current Medicinal Chemistry, 9(14), 1323–1348. https://doi.org/10.2174/0929867023369853
  • Arshad, T., Khan, K. M., Rasool, N., Salar, U., Hussain, S., Asghar, H., Ashraf, M., Wadood, A., Riaz, M., Perveen, S., Taha, M., & Ismail, N. H. (2017). 5-Bromo-2-aryl benzimidazole derivatives as non-cytotoxic potential dual inhibitors of α-glucosidase and urease enzymes. Bioorganic Chemistry, 72, 21–31. https://doi.org/10.1016/j.bioorg.2017.03.007
  • Arshia, A. H., Shadravan, S., Solhjoo, A., Sakhteman, A., & Sami, A. (2021). De novo design of novel protease inhibitor candidates in the treatment of SARS-CoV-2 using deep learning, docking, and molecular dynamic simulations. Computers in Biology and Medicine, 139, 104967. https://doi.org/10.1016/j.compbiomed.2021.104967
  • Ayaz, M., Lodhi, M. A., Riaz, M., Ul-Haq, A., Malik, A., & Choudhary, M. I. (2006). Novel urease inhibitors from Daphne oleoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 21(5), 527–529. https://doi.org/10.1080/14756360600774470
  • Aziz, N., Kim, M.-Y., & Cho, J. Y. (2018). Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. Journal of Ethnopharmacology, 225, 342–358. https://doi.org/10.1016/j.jep.2018.05.019
  • Babu, T. M. C., Rammohan, A., Baki, V. B., Devi, S., Gunasekar, D., & Rajendra, W. (2016). Development of novel HER2 inhibitors against gastric cancer derived from flavonoid source of Syzygium alternifolium through molecular dynamics and pharmacophore-based screening. Drug Design, Development and Therapy, 10, 3611–3632. https://doi.org/10.2147/DDDT.S111914
  • Babu, T. M. C., Rajesh, S. S., Bhaskar, B. V., Devi, S., Rammohan, A., Sivaraman, T., & Rajendra, W. (2017). Molecular docking, molecular dynamics simulation, biological evaluation and 2D QSAR analysis of flavonoids from Syzygium alternifolium as potent anti-Helicobacter pylori agents. RSC Advances, 7(30), 18277–18292. https://doi.org/10.1039/C6RA27872H
  • Bacanlı, M., Başaran, A. A., & Başaran, N. (2017). The antioxidant, cytotoxic, and antigenotoxic effects of galangin, puerarin, and ursolic acid in mammalian cells. Drug and Chemical Toxicology, 40(3), 256–262. https://doi.org/10.1080/01480545.2016.1209680
  • Bae, E.-A., Han, M. J., & Kim, D.-H. (2001). In vitro anti-Helicobacter pylori activity of irisolidone isolated from the flowers and rhizomes of Pueraria thunbergiana. Planta Medica, 67(2), 161–163. https://doi.org/10.1055/s-2001-11499
  • Bangar, S. P., Chaudhary, V., Sharma, N., Bansal, V., Ozogul, F., & Lorenzo, J. M. (2023). Kaempferol: A flavonoid with wider biological activities and its applications. Critical Reviews in Food Science and Nutrition, 63(28), 9580–9604. https://doi.org/10.1080/10408398.2022.2067121
  • Berendsen, H. J., Postma, J. V., Van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bylka, W., Matlawska, I., & Pilewski, N. (2004). Natural flavonoids as antimicrobial agents. Jana, 7, 24–31.
  • Caruso, F., Berinato, M., Hernandez, M., Belli, S., Smart, C., & Rossi, M. (2022). Antioxidant properties of bee propolis and an important component, galangin, described by X-ray crystal structure, DFT-D and hydrodynamic voltammetry. PLOS One, 17(5), e0267624. https://doi.org/10.1371/journal.pone.0267624
  • Caselli, A., Cirri, P., Santi, A., & Paoli, P. (2016). Morin: A promising natural drug. Current Medicinal Chemistry, 23(8), 774–791. https://doi.org/10.2174/0929867323666160106150821
  • Chenafa, H., Mesli, F., Daoud, I., Achiri, R., Ghalem, S., & Neghra, A. (2022). In silico design of enzyme α-amylase and α-glucosidase inhibitors using molecular docking, molecular dynamic, conceptual DFT investigation and pharmacophore modelling. Journal of Biomolecular Structure & Dynamics, 40(14), 6308–6329. https://doi.org/10.1080/07391102.2021.1882340
  • Chung, J., Hsia, T., Kuo, H., Li, Y., Lee, Y., Lin, S., & Hung, C. (2001). Inhibitory actions of luteolin on the growth and arylamine N-acetyltransferase activity in strains of Helicobacter pylori from ulcer patients. Toxicology in Vitro, 15(3), 191–198. https://doi.org/10.1016/s0887-2333(01)00015-7
  • Cornell, W. D., Cieplak, P., Bayly, C. I., & Kollman, P. A. (2002). Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. Journal of the American Chemical Society, 115(21), 9620–9631. https://doi.org/10.1021/ja00074a030
  • Cunha, E. S., Chen, X., Sanz-Gaitero, M., Mills, D. J., & Luecke, H. (2021). Cryo-EM structure of Helicobacter pylori urease with an inhibitor in the active site at 2.0 Å resolution. Nature Communications, 12(1), 230. https://doi.org/10.1038/s41467-020-20485-6
  • Cushnie, T., Hamilton, V., Chapman, D., Taylor, P., & Lamb, A. (2007). Aggregation of Staphylococcus aureus following treatment with the antibacterial flavonol galangin. Journal of Applied Microbiology, 103(5), 1562–1567. https://doi.org/10.1111/j.1365-2672.2007.03393.x
  • Cushnie, T. T., & Lamb, A. J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents, 38(2), 99–107. https://doi.org/10.1016/j.ijantimicag.2011.02.014
  • Dabeek, W. M., & Marra, M. V. (2019). Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 11(10), 2288. https://doi.org/10.3390/nu11102288
  • Daina, A., & Zoete, V. (2016). A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
  • Daoud, I., Melkemi, N., Salah, T., & Ghalem, S. (2018). Combined QSAR, molecular docking and molecular dynamics study on new acetylcholinesterase and Butyrylcholinesterase inhibitors. Computational Biology and Chemistry, 74, 304–326. https://doi.org/10.1016/j.compbiolchem.2018.03.021
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • David, A. V. A., Arulmoli, R., & Parasuraman, S. (2016). Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacognosy Reviews, 10(20), 84–89. https://doi.org/10.4103/0973-7847.194044
  • Dias, M. C., Pinto, D. C., & Silva, A. M. (2021). Plant flavonoids: Chemical characteristics and biological activity. Molecules 26(17), 5377. https://doi.org/10.3390/molecules26175377
  • Dmitriev, A., Filimonov, D., Rudik, A., Pogodin, P., Karasev, D., Lagunin, A., & Poroikov, V. (2019). Drug-drug interaction prediction using PASS. SAR and QSAR in Environmental Research, 30(9), 655–664. https://doi.org/10.1080/1062936X.2019.1653966
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Ferreira, L. L., & Andricopulo, A. D. (2019). ADMET modeling approaches in drug discovery. Drug Discovery Today, 24(5), 1157–1165. https://doi.org/10.1016/j.drudis.2019.03.015
  • Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., & Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444–457. https://doi.org/10.1007/s10593-014-1496-1
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A. and Nakatsuji, H., (2009). 09, Revision D. 01, Gaussian. Inc., Wallingford, CT.
  • Fu, Y., Wang, W., Zeng, Q., Wang, T., & Qian, W. (2021). Antibiofilm efficacy of luteolin against single and dual species of Candida albicans and Enterococcus faecalis. Frontiers in Microbiology, 12, 715156. https://doi.org/10.3389/fmicb.2021.715156
  • Geourjon, C., & Deléage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014). SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research, 42(Web Server issue), W32–W38. https://doi.org/10.1093/nar/gku293
  • Goel, R. K., Singh, D., Lagunin, A., & Poroikov, V. (2011). PASS-assisted exploration of new therapeutic potential of natural products. Medicinal Chemistry Research, 20(9), 1509–1514. https://doi.org/10.1007/s00044-010-9398-y
  • González-Segovia, R., Quintanar, J. L., Salinas, E., Ceballos-Salazar, R., Aviles-Jiménez, F., & Torres-López, J. (2008). Effect of the flavonoid quercetin on inflammation and lipid peroxidation induced by Helicobacter pylori in gastric mucosa of guinea pig. Journal of Gastroenterology, 43(6), 441–447. https://doi.org/10.1007/s00535-008-2184-7
  • González, A., Casado, J., & Lanas, Á. (2021). Fighting the antibiotic crisis: Flavonoids as promising antibacterial drugs against Helicobacter pylori infection. Frontiers in Cellular and Infection Microbiology, 11, 709749. https://doi.org/10.3389/fcimb.2021.709749
  • Graham, D. Y., & Miftahussurur, M. (2018). Helicobacter pylori urease for diagnosis of Helicobacter pylori infection: A mini review. Journal of Advanced Research, 13, 51–57. https://doi.org/10.1016/j.jare.2018.01.006
  • Guo, Y., Liu, Y., Zhang, Z., Chen, M., Zhang, D., Tian, C., Liu, M., & Jiang, G. (2020). The antibacterial activity and mechanism of action of luteolin against Trueperella pyogenes. Infection and Drug Resistance, 13, 1697–1711. https://doi.org/10.2147/IDR.S253363
  • Hamad, A., Khan, M. A., Rahman, K. M., Ahmad, I., Ul-Haq, Z., Khan, S., & Shafiq, Z. (2020). Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies. Bioorganic Chemistry, 102, 104057. https://doi.org/10.1016/j.bioorg.2020.104057
  • Harris, P., Mobley, H., Perez-Perez, G., Blaser, M., & Smith, P. (1996). Helicobacter pylori urease is a potent stimulus of mononuclear phagocyte activation and inflammatory cytokine production. Gastroenterology, 111(2), 419–425. https://doi.org/10.1053/gast.1996.v111.pm8690207
  • Hofmeier, H., Schmatloch, S., Wouters, D., & Schubert, U. (2004). Metallo-supramolecular polymers: Towards new functional materials with controlled nanostructures. Transactions of the Materials Research Society of Japan, 29, 203–206.
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review. A, General Physics, 31(3), 1695–1697. https://doi.org/10.1103/physreva.31.1695
  • Inc, C.C.G. (2016). Molecular operating environment (MOE). Chemical Computing Group Inc. Sherbooke St. West, Suite.
  • Isomoto, H., Furusu, H., Ohnita, K., Wen, C.-Y., Inoue, K., & Kohno, S. (2005). Sofalcone, a mucoprotective agent, increases the cure rate of Helicobacter pylori infection when combined with rabeprazole, amoxicillin and clarithromycin. World Journal of Gastroenterology, 11(11), 1629–1633. https://doi.org/10.3748/wjg.v11.i11.1629
  • Jucá, M. M., Cysne Filho, F. M. S., de Almeida, J. C., Mesquita, D. D S., Barriga, J. R. D M., Dias, K. C. F., Barbosa, T. M., Vasconcelos, L. C., Leal, L. K. A. M., Ribeiro, J. E., & Vasconcelos, S. M. M. (2020). Flavonoids: Biological activities and therapeutic potential. Natural Product Research, 34(5), 692–705. https://doi.org/10.1080/14786419.2018.1493588
  • Kasala, E. R., Bodduluru, L. N., Madana, R. M., V, A. K., Gogoi, R., & Barua, C. C. (2015). Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicology Letters, 233(2), 214–225. https://doi.org/10.1016/j.toxlet.2015.01.008
  • Kataria, R., & Khatkar, A. (2019). Molecular docking, synthesis, kinetics study, structure–activity relationship and ADMET analysis of morin analogous as Helicobacter pylori urease inhibitors. BMC Chemistry, 13(1), 45. https://doi.org/10.1186/s13065-019-0562-2
  • Khan, I., Ali, S., Hameed, S., Rama, N. H., Hussain, M. T., Wadood, A., Uddin, R., Ul-Haq, Z., Khan, A., Ali, S., & Choudhary, M. I. (2010). Synthesis, antioxidant activities and urease inhibition of some new 1, 2, 4-triazole and 1, 3, 4-thiadiazole derivatives. European Journal of Medicinal Chemistry, 45(11), 5200–5207. https://doi.org/10.1016/j.ejmech.2010.08.034
  • Khan, M. T., Ali, A., Wang, Q., Irfan, M., Khan, A., Zeb, M. T., Zhang, Y.-J., Chinnasamy, S., & Wei, D.-Q. (2021). Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2-a molecular dynamic study. Journal of Biomolecular Structure & Dynamics, 39(10), 3627–3637. https://doi.org/10.1080/07391102.2020.1769733
  • Kim, D. A., Jeon, Y. K., & Nam, M. J. (2012). Galangin induces apoptosis in gastric cancer cells via regulation of ubiquitin carboxy-terminal hydrolase isozyme L1 and glutathione S-transferase P. Food and Chemical Toxicology, 50(3–4), 684–688. https://doi.org/10.1016/j.fct.2011.11.039
  • Kot, M., Zaborska, W., & Orlinska, K. (2001). Inhibition of jack bean urease by N-(n-butyl) thiophosphorictriamide and N-(n-butyl) phosphorictriamide: Determination of the inhibition mechanism. Journal of Enzyme Inhibition, 16(6), 507–516. https://doi.org/10.1080/14756360127569
  • Kräutler, V., van Gunsteren, W. F., & Hunenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22(5), 501–508. https://doi.org/10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
  • Li, P., & Merz, K. M. Jr., (2016). MCPB. PY: A python based metal center parameter builder. ACS Publications.
  • Li, S.-Y., Zhang, Y., Wang, Y.-N., Yuan, L.-C., Kong, C.-C., Xiao, Z.-P., & Zhu, H.-L. (2023). Identification of (N-aryl-N-arylsulfonyl) aminoacetohydroxamic acids as novel urease inhibitors and the mechanism exploration. Bioorganic Chemistry, 130, 106275. https://doi.org/10.1016/j.bioorg.2022.106275
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Lobanov, M. Y., Bogatyreva, N., & Galzitskaya, O. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • López-Lázaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini Reviews in Medicinal Chemistry, 9(1), 31–59. https://doi.org/10.2174/138955709787001712
  • Ma, Y., Tao, Y., Qu, H., Wang, C., Yan, F., Gao, X., & Zhang, M. (2022). Exploration of plant-derived natural polyphenols toward COVID-19 main protease inhibitors: DFT, molecular docking approach, and molecular dynamics simulations. RSC Advances, 12(9), 5357–5368. https://doi.org/10.1039/d1ra07364h
  • Mamidala, R., Bhimathati, S. R. S., & Vema, A. (2021). Discovery of novel dihydropyrimidine and hydroxamic acid hybrids as potent Helicobacter pylori urease inhibitors. Bioorganic Chemistry, 114, 105010. https://doi.org/10.1016/j.bioorg.2021.105010
  • Mani, R., & Natesan, V. (2018). Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 145, 187–196. https://doi.org/10.1016/j.phytochem.2017.09.016
  • Manish, M., Mishra, S., Anand, A., & Subbarao, N. (2022). Computational molecular interaction between SARS-CoV-2 main protease and theaflavin digallate using free energy perturbation and molecular dynamics. Computers in Biology and Medicine, 150, 106125. https://doi.org/10.1016/j.compbiomed.2022.106125
  • Matsubara, S., Shibata, H., Ishikawa, F., Yokokura, T., Takahashi, M., Sugimura, T., & Wakabayashi, K. (2003). Suppression of Helicobacter pylori-induced gastritis by green tea extract in Mongolian gerbils. Biochemical and Biophysical Research Communications, 310(3), 715–719. https://doi.org/10.1016/j.bbrc.2003.09.066
  • Meng, J.-R., Liu, J., Fu, L., Shu, T., Yang, L., Zhang, X., Jiang, Z.-H., & Bai, L.-P. (2023). Anti-entry activity of natural flavonoids against SARS-CoV-2 by targeting spike RBD. Viruses, 15(1), 160. https://doi.org/10.3390/v15010160
  • Metwaly, A. M., Elkaeed, E. B., Alsfouk, B. A., Saleh, A. M., Mostafa, A. E., & Eissa, I. H. (2022). The computational preventive potential of the rare flavonoid, patuletin, isolated from Tagetes patula, against SARS-CoV-2. Plants, 11(14), 1886. https://doi.org/10.3390/plants11141886
  • Mohammed, S. O., El Ashry, E. S. H., Khalid, A., Amer, M. R., Metwaly, A. M., Eissa, I. H., Elkaeed, E. B., Elshobaky, A., & Hafez, E. E. (2022). Expression, purification, and comparative inhibition of Helicobacter pylori urease by regio-selectively alkylated benzimidazole 2-thione derivatives. Molecules, 27(3), 865. https://doi.org/10.3390/molecules27030865
  • Molsoft LLC. (2021). Drug-Likeness and Molecular Property Prediction. Available online: http://molsoft.com/mprop/
  • Muegge, I., Heald, S. L., & Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841–1846. https://doi.org/10.1021/jm015507e
  • Muhammad, A., Anis, I., Khan, A., Marasini, B. P., Choudhary, M. I., & Shah, M. R. (2012). Biologically active C-alkylated flavonoids from Dodonaea viscosa. Archives of Pharmacal Research, 35(3), 431–436. https://doi.org/10.1007/s12272-012-0305-6
  • Ni, W.-W., Liu, Q., Ren, S.-Z., Li, W.-Y., Yi, L.-L., Jing, H., Sheng, L.-X., Wan, Q., Zhong, P.-F., Fang, H.-L., Ouyang, H., Xiao, Z.-P., & Zhu, H.-L. (2018). The synthesis and evaluation of phenoxyacylhydroxamic acids as potential agents for Helicobacter pylori infections. Bioorganic & Medicinal Chemistry, 26(14), 4145–4152. https://doi.org/10.1016/j.bmc.2018.07.003
  • Nosé, S. (1984). A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 52(2), 255–268. https://doi.org/10.1080/00268978400101201
  • Nosé, S., & Klein, M. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics, 50(5), 1055–1076. https://doi.org/10.1080/00268978300102851
  • Pan, L., Wang, C., Yan, K., Zhao, K., Sheng, G., Zhu, H., Zhao, X., Qu, D., Niu, F., & You, Z. (2016). Synthesis, structures and Helicobacter pylori urease inhibitory activity of copper (II) complexes with tridentate aroylhydrazone ligands. Journal of Inorganic Biochemistry, 159, 22–28. https://doi.org/10.1016/j.jinorgbio.2016.02.017
  • Pepeljnjak, S., & Kosalec, I. (2004). Galangin expresses bactericidal activity against multiple-resistant bacteria: MRSA, Enterococcus spp. and Pseudomonas aeruginosa. FEMS Microbiology Letters, 240(1), 111–116. https://doi.org/10.1016/j.femsle.2004.09.018
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science, 30(1), 70–82. https://doi.org/10.1002/pro.3943
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Prasanth, D. S., Murahari, M., Chandramohan, V., Panda, S. P., Atmakuri, L. R., & Guntupalli, C. (2021). In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. Journal of Biomolecular Structure & Dynamics, 39(13), 4618–4632. https://doi.org/10.1080/07391102.2020.1779129
  • Qian, W., Liu, M., Fu, Y., Zhang, J., Liu, W., Li, J., Li, X., Li, Y., & Wang, T. (2020). Antimicrobial mechanism of luteolin against Staphylococcus aureus and Listeria monocytogenes and its antibiofilm properties. Microbial Pathogenesis, 142, 104056. https://doi.org/10.1016/j.micpath.2020.104056
  • Rampogu, S., Gajula, R. G., & Lee, K. W. (2021). A comprehensive review on chemotherapeutic potential of galangin. Biomedecine & Pharmacotherapie [Biomedicine & Pharmacotherapy], 141, 111808. https://doi.org/10.1016/j.biopha.2021.111808
  • Rauf, A., Shahzad, S., Bajda, M., Yar, M., Ahmed, F., Hussain, N., Akhtar, M. N., Khan, A., & Jończyk, J. (2015). Design and synthesis of new barbituric-and thiobarbituric acid derivatives as potent urease inhibitors: Structure activity relationship and molecular modeling studies. Bioorganic & Medicinal Chemistry, 23(17), 6049–6058. https://doi.org/10.1016/j.bmc.2015.05.038
  • Rauf, M. K., Zaib, S., Talib, A., Ebihara, M., Badshah, A., Bolte, M., & Iqbal, J. (2016). Solution-phase microwave assisted parallel synthesis, biological evaluation and in silico docking studies of N, N′-disubstituted thioureas derived from 3-chlorobenzoic acid. Bioorganic & Medicinal Chemistry, 24(18), 4452–4463. https://doi.org/10.1016/j.bmc.2016.07.042
  • Ren, J., Lu, Y., Qian, Y., Chen, B., Wu, T., & Ji, G. (2019). Recent progress regarding kaempferol for the treatment of various diseases. Experimental and Therapeutic Medicine, 18(4), 2759–2776. https://doi.org/10.3892/etm.2019.7886
  • Ryu, S., Lim, W., Bazer, F. W., & Song, G. (2017). Chrysin induces death of prostate cancer cells by inducing ROS and ER stress. Journal of Cellular Physiology, 232(12), 3786–3797. https://doi.org/10.1002/jcp.25861
  • Salomon‐Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the amber biomolecular simulation package. WIREs Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Santi, M. D., Zunini, M. P., Vera, B., Bouzidi, C., Dumontet, V., Abin-Carriquiry, A., Grougnet, R., & Ortega, M. G. (2018). Xanthine oxidase inhibitory activity of natural and hemisynthetic flavonoids from Gardenia oudiepe (Rubiaceae) in vitro and molecular docking studies. European Journal of Medicinal Chemistry, 143, 577–582. https://doi.org/10.1016/j.ejmech.2017.11.071
  • Seelinger, G., Merfort, I., Wölfle, U., & Schempp, C. M. (2008). Anti-carcinogenic effects of the flavonoid luteolin. Molecules, 13(10), 2628–2651. https://doi.org/10.3390/molecules13102628
  • Serafim, C., Araruna, M. E., Júnior, E. A., Diniz, M., Hiruma-Lima, C., & Batista, L. (2020). A review of the role of flavonoids in peptic ulcer (2010–2020). Molecules, 25(22), 5431. https://doi.org/10.3390/molecules25225431
  • Shabana, S., Kawai, A., Kai, K., Akiyama, K., & Hayashi, H. (2010). Inhibitory activity against urease of quercetin glycosides isolated from Allium cepa and Psidium guajava. Bioscience, Biotechnology, and Biochemistry, 74(4), 878–880. https://doi.org/10.1271/bbb.90895
  • Sharaf, M., Arif, M., Hamouda, H. I., Khan, S., Abdalla, M., Shabana, S., Rozan, H. E., Khan, T. U., Chi, Z., & Liu, C. (2022). Current research in microbial sciences. Current Research in Microbial Sciences, 3, 100103. https://doi.org/10.1016/j.crmicr.2021.100103
  • Siddiqui, A., Akhtar, J., Uddin M.s, S., Khan, M. I., Khalid, M., & Ahmad, M. (2018). A naturally occurring flavone (chrysin): Chemistry, occurrence, pharmacokinetic, toxicity, molecular targets and medicinal properties. Journal of Biologically Active Products from Nature, 8(4), 208–227. https://doi.org/10.1080/22311866.2018.1498750
  • Sousa da Silva, A. W., & Vranken, W. F. (2012). ACPYPE-antechamber python parser interface. BMC Research Notes, 5(1), 367. https://doi.org/10.1186/1756-0500-5-367
  • Suresh, P. S., Kesarwani, V., Kumari, S., Shankar, R., & Sharma, U. (2023). Bisbenzylisoquinolines from Cissampelos pareira L. as antimalarial agents: Molecular docking, pharmacokinetics analysis, and molecular dynamic simulation studies. Computational Biology and Chemistry, 104, 107826. https://doi.org/10.1016/j.compbiolchem.2023.107826
  • Susanti, N. M. P., Damayanti, S., Kartasasmita, R. E., & Tjahjono, D. H. (2021). A search for cyclin-dependent kinase 4/6 inhibitors by pharmacophore-based virtual screening, molecular docking, and molecular dynamic simulations. International Journal of Molecular Sciences, 22(24), 13423. https://doi.org/10.3390/ijms222413423
  • Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V (2019). STRING V11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wang, T., Fan, L., Feng, S., Ding, X., An, X., Chen, J., Wang, M., Zhai, X., & Li, Y. (2022). Network pharmacology of iridoid glycosides from Eucommia ulmoides Oliver against osteoporosis. Scientific Reports, 12(1), 7430. https://doi.org/10.1038/s41598-022-10769-w
  • Xiao, Z.-P., Shi, D.-H., Li, H.-Q., Zhang, L.-N., Xu, C., & Zhu, H.-L. (2007). Polyphenols based on isoflavones as inhibitors of Helicobacter pylori urease. Bioorganic & Medicinal Chemistry, 15(11), 3703–3710. https://doi.org/10.1016/j.bmc.2007.03.045
  • Xiao, Z.-P., Peng, Z.-Y., Dong, J.-J., He, J., Ouyang, H., Feng, Y.-T., Lu, C.-L., Lin, W.-Q., Wang, J.-X., Xiang, Y.-P., & Zhu, H.-L. (2013). Synthesis, structure–activity relationship analysis and kinetics study of reductive derivatives of flavonoids as Helicobacter pylori urease inhibitors. European Journal of Medicinal Chemistry, 63, 685–695. https://doi.org/10.1016/j.ejmech.2013.03.016
  • Yang, W., Feng, Q., Peng, Z., & Wang, G. (2022). An overview on the synthetic urease inhibitors with structure-activity relationship and molecular docking. European Journal of Medicinal Chemistry, 234, 114273. https://doi.org/10.1016/j.ejmech.2022.114273
  • Yaqoob, S., Hameed, A., Ahmed, M., Imran, M., Qadir, M. A., Ramzan, M., Yousaf, N., Iqbal, J., & Muddassar, M. (2022). Antiurease screening of alkyl chain-linked thiourea derivatives: In vitro biological activities, molecular docking, and dynamic simulations studies. RSC Advances, 12(10), 6292–6302. https://doi.org/10.1039/d1ra08694d
  • Yu, X.-D., Zheng, R.-B., Xie, J.-H., Su, J.-Y., Huang, X.-Q., Wang, Y.-H., Zheng, Y.-F., Mo, Z.-Z., Wu, X.-L., Wu, D.-W., Liang, Y-e., Zeng, H.-F., Su, Z.-R., & Huang, P. (2015). Biological evaluation and molecular docking of baicalin and scutellarin as Helicobacter pylori urease inhibitors. Journal of Ethnopharmacology, 162, 69–78. https://doi.org/10.1016/j.jep.2014.12.041
  • Zaretzki, J., Bergeron, C., Huang, T-W., Rydberg, P., Swamidass, S. J., & Breneman, C. M. (2013). RS-WebPredictor: A server for predicting CYP-mediated sites of metabolism on drug-like molecules. Bioinformatics, 29(4), 497–498. https://doi.org/10.1093/bioinformatics/bts705

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.