143
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Deep learning-based design and screening of benzimidazole-pyrazine derivatives as adenosine A2B receptor antagonists

ORCID Icon, , , & ORCID Icon
Received 16 Sep 2023, Accepted 11 Dec 2023, Published online: 22 Dec 2023

References

  • Allard, B., Allard, D., Buisseret, L., & Stagg, J. (2020). The adenosine pathway in immuno-oncology. Nature Reviews. Clinical Oncology, 17(10), 611–629. https://doi.org/10.1038/s41571-020-0382-2
  • Arús-Pous, J., Blaschke, T., Ulander, S., Reymond, J.-L., Chen, H., & Engkvist, O. (2019). Exploring the GDB-13 chemical space using deep generative models. Journal of Cheminformatics, 11(1), 20. https://doi.org/10.1186/s13321-019-0341-z
  • Arús-Pous, J., Johansson, S. V., Prykhodko, O., Bjerrum, E. J., Tyrchan, C., Reymond, J.-L., Chen, H., & Engkvist, O. (2019). Randomized SMILES strings improve the quality of molecular generative models. Journal of Cheminformatics, 11(1), 71. https://doi.org/10.1186/s13321-019-0393-0
  • Arús-Pous, J., Patronov, A., Bjerrum, E. J., Tyrchan, C., Reymond, J.-L., Chen, H., & Engkvist, O. (2020). SMILES-based deep generative scaffold decorator for de-novo drug design. Journal of Cheminformatics, 12(1), 38. https://doi.org/10.1186/s13321-020-00441-8
  • Baell, J. B., & Holloway, G. A. (2010). New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. Journal of Medicinal Chemistry, 53(7), 2719–2740. https://doi.org/10.1021/jm901137j
  • Baillif, B., Cole, J., McCabe, P., & Bender, A. (2023). Deep generative models for 3D molecular structure. Current Opinion in Structural Biology, 80, 102566. https://doi.org/10.1016/j.sbi.2023.102566
  • Bajusz, D., Rácz, A., & Héberger, K. (2015). Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? Journal of Cheminformatics, 7(1), 20. https://doi.org/10.1186/s13321-015-0069-3
  • Bemis, G. W., & Murcko, M. A. (1996). The properties of known drugs. 1. Molecular frameworks. Journal of Medicinal Chemistry, 39(15), 2887–2893. https://doi.org/10.1021/jm9602928
  • Borea, P. A., Gessi, S., Merighi, S., Vincenzi, F., & Varani, K. (2018). Pharmacology of adenosine receptors: The state of the art. Physiological Reviews, 98(3), 1591–1625. https://doi.org/10.1152/physrev.00049.2017
  • Born, J., & Manica, M. (2023). Regression transformer enables concurrent sequence regression and generation for molecular language modelling. Nature Machine Intelligence, 5(4), 432–444. https://doi.org/10.1038/s42256-023-00639-z
  • Borrmann, T., Hinz, S., Bertarelli, D. C. G., Li, W., Florin, N. C., Scheiff, A. B., & Müller, C. E. (2009). 1-Alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: Development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. Journal of Medicinal Chemistry, 52(13), 3994–4006. https://doi.org/10.1021/jm900413e
  • Brown, N., Fiscato, M., Segler, M. H. S., & Vaucher, A. C. (2019). GuacaMol: Benchmarking models for de novo molecular design. Journal of Chemical Information and Modeling, 59(3), 1096–1108. https://doi.org/10.1021/acs.jcim.8b00839
  • Cai, H., Xu, Y., Guo, S., He, X., Sun, J., Li, X., Li, C., Yin, W., Cheng, X., Jiang, H., Xu, H. E., Xie, X., & Jiang, Y. (2022). Structures of adenosine receptor A2BR bound to endogenous and synthetic agonists. Cell Discovery, 8(1), 140. https://doi.org/10.1038/s41421-022-00503-1
  • Chen, S., Akdemir, I., Fan, J., Linden, J., Zhang, B., & Cekic, C. (2020). The expression of adenosine A2B receptor on antigen-presenting cells suppresses CD8+ T-cell responses and promotes tumor growth. Cancer Immunology Research, 8(8), 1064–1074. https://doi.org/10.1158/2326-6066.CIR-19-0833
  • Chen, Y., Zhang, J., Weng, Y., Xu, Y., Lu, W., Liu, W., Liu, M., Hua, T., & Song, G. (2022). Cryo-EM structure of the human adenosine A2B receptor–Gs signaling complex. Science Advances, 8(51), eadd3709. https://doi.org/10.1126/sciadv.add3709
  • Chen, Z., Min, M. R., Parthasarathy, S., & Ning, X. (2021). A deep generative model for molecule optimization via one fragment modification. Nature Machine Intelligence, 3(12), 1040–1049. https://doi.org/10.1038/s42256-021-00410-2
  • Cheng, F., Xu, Z., Liu, G., & Tang, Y. (2010). Insights into binding modes of adenosine A2B antagonists with ligand-based and receptor-based methods. European Journal of Medicinal Chemistry, 45(8), 3459–3471. https://doi.org/10.1016/j.ejmech.2010.04.039
  • Cheng, R. K. Y., Segala, E., Robertson, N., Deflorian, F., Doré, A. S., Errey, J. C., Fiez-Vandal, C., Marshall, F. H., & Cooke, R. M. (2017). Structures of human A1 and A2A adenosine receptors with xanthines reveal determinants of selectivity. Structure, 25(8), 1275–1285.e4. https://doi.org/10.1016/j.str.2017.06.012
  • Chenthamarakshan, V., Hoffman, S. C., Owen, C. D., Lukacik, P., Strain-Damerell, C., Fearon, D., Malla, T. R., Tumber, A., Schofield, C. J., Duyvesteyn, H. M. E., Dejnirattisai, W., Carrique, L., Walter, T. S., Screaton, G. R., Matviiuk, T., Mojsilovic, A., Crain, J., Walsh, M. A., Stuart, D. I., & Das, P. (2023). Accelerating drug target inhibitor discovery with a deep generative foundation model. Science Advances, 9(25), eadg7865. https://doi.org/10.1126/sciadv.adg7865
  • Consortium, T. U. (2021). UniProt: The universal protein knowledgebase in. Nucleic Acids Research, 2020(49 (D1)), D480–D489.
  • Crespo, A., El Maatougui, A., Biagini, P., Azuaje, J., Coelho, A., Brea, J., Loza, M. I., Cadavid, M. I., García-Mera, X., Gutiérrez-de-Terán, H., & Sotelo, E. (2013). Discovery of 3,4-dihydropyrimidin-2(1H)-ones as a novel class of potent and selective A2B adenosine receptor antagonists. ACS Medicinal Chemistry Letters, 4(11), 1031–1036. https://doi.org/10.1021/ml400185v
  • Das, P., Sercu, T., Wadhawan, K., Padhi, I., Gehrmann, S., Cipcigan, F., Chenthamarakshan, V., Strobelt, H., Dos Santos, C., Chen, P. Y., Yang, Y. Y., Tan, J. P. K., Hedrick, J., Crain, J., & Mojsilovic, A. (2021). Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nature Biomedical Engineering, 5(6), 613–623. https://doi.org/10.1038/s41551-021-00689-x
  • Davies, M., Nowotka, M., Papadatos, G., Dedman, N., Gaulton, A., Atkinson, F., Bellis, L., & Overington, J. P. (2015). ChEMBL web services: Streamlining access to drug discovery data and utilities. Nucleic Acids Research, 43(W1), W612–W620. https://doi.org/10.1093/nar/gkv352
  • De, P., Kar, S., Ambure, P., & Roy, K. (2022). Prediction reliability of QSAR models: An overview of various validation tools. Archives of Toxicology, 96(5), 1279–1295. https://doi.org/10.1007/s00204-022-03252-y
  • Deb, P. K., Chandrasekaran, B., Mailavaram, R., Tekade, R. K., & Jaber, A. M. Y. (2019). Molecular modeling approaches for the discovery of adenosine A2B receptor antagonists: Current status and future perspectives. Drug Discovery Today, 24(9), 1854–1864. https://doi.org/10.1016/j.drudis.2019.05.011
  • Di Virgilio, F., & Adinolfi, E. (2017). Extracellular purines, purinergic receptors and tumor growth. Oncogene, 36(3), 293–303. https://doi.org/10.1038/onc.2016.206
  • El Maatougui, A., Azuaje, J., González-Gómez, M., Miguez, G., Crespo, A., Carbajales, C., Escalante, L., García-Mera, X., Gutiérrez-de-Terán, H., & Sotelo, E. (2016). Discovery of potent and highly selective A2B adenosine receptor antagonist chemotypes. Journal of Medicinal Chemistry, 59(5), 1967–1983. https://doi.org/10.1021/acs.jmedchem.5b01586
  • Ertl, P., & Schuffenhauer, A. (2009). Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics, 1(1), 8. https://doi.org/10.1186/1758-2946-1-8
  • Fan, P., Housley, F., Haberstock, H., Horne, K., Liu, J., Elzein, E., & Yao, L. (2021). Abstract 55: TT-702, a selective and potent A2B receptor antagonist for the treatment of cancer. Cancer Research, 81(13_Supplement), 55–55. https://doi.org/10.1158/1538-7445.AM2021-55
  • Fischer, A., Smieško, M., Sellner, M., & Lill, M. A. (2021). Decision making in structure-based drug discovery: Visual inspection of docking results. Journal of Medicinal Chemistry, 64(5), 2489–2500. https://doi.org/10.1021/acs.jmedchem.0c02227
  • Gao, Z. G., & Jacobson, K. A. (2019). A(2B) adenosine receptor and cancer. International Journal of Molecular Sciences, 20(20), 5139.
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Haskó, G., Csóka, B., Németh, Z. H., Vizi, E. S., & Pacher, P. (2009). A2B adenosine receptors in immunity and inflammation. Trends in Immunology, 30(6), 263–270. https://doi.org/10.1016/j.it.2009.04.001
  • He, J., Nittinger, E., Tyrchan, C., Czechtizky, W., Patronov, A., Bjerrum, E. J., & Engkvist, O. (2022). Transformer-based molecular optimization beyond matched molecular pairs. Journal of Cheminformatics, 14(1), 18. https://doi.org/10.1186/s13321-022-00599-3
  • Hoogeboom, E., Satorras, V. G., Vignac, C., & Welling, M. (2022). Equivariant diffusion for molecule generation in 3D [Paper presentation]. International Conference on Machine Learning, PMLR (pp. 8867–8887).
  • Hussain, J., & Rea, C. (2010). Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. Journal of Chemical Information and Modeling, 50(3), 339–348. https://doi.org/10.1021/ci900450m
  • Imrie, F., Hadfield, T. E., Bradley, A. R., & Deane, C. M. (2021). Deep generative design with 3D pharmacophoric constraints. Chemical Science, 12(43), 14577–14589. https://doi.org/10.1039/d1sc02436a
  • Isberg, V., de Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F. H., Mordalski, S., Pin, J.-P., Stevens, R. C., Vriend, G., & Gloriam, D. E. (2015). Generic GPCR residue numbers – Aligning topology maps while minding the gaps. Trends in Pharmacological Sciences, 36(1), 22–31. https://doi.org/10.1016/j.tips.2014.11.001
  • Jiang, J., Seel, C. J., Temirak, A., Namasivayam, V., Arridu, A., Schabikowski, J., Baqi, Y., Hinz, S., Hockemeyer, J., & Müller, C. E. (2019). A2B adenosine receptor antagonists with picomolar potency. Journal of Medicinal Chemistry, 62(8), 4032–4055. https://doi.org/10.1021/acs.jmedchem.9b00071
  • Jin, J., Wang, D., Shi, G., Bao, J., Wang, J., Zhang, H., Pan, P., Li, D., Yao, X., Liu, H., Hou, T., & Kang, Y. (2023). FFLOM: A flow-based autoregressive model for fragment-to-lead optimization. Journal of Medicinal Chemistry, 66(15), 10808–10823. https://doi.org/10.1021/acs.jmedchem.3c01009
  • Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction tree variational autoencoder for molecular graph generation [Paper presentation]. International Conference on Machine Learning, PMLR (pp. 2323–2332).
  • Kang, S., & Cho, K. (2019). Conditional molecular design with deep generative models. Journal of Chemical Information and Modeling, 59(1), 43–52. https://doi.org/10.1021/acs.jcim.8b00263
  • Kim, Y.-C., Ji, X., D.; Melman, N., Linden, J., & Jacobson, K. A. (2000). Anilide derivatives of an 8-phenylxanthine carboxylic congener are highly potent and selective antagonists at human A2B adenosine receptors. Journal of Medicinal Chemistry, 43(6), 1165–1172. https://doi.org/10.1021/jm990421v
  • Kleandrova, V. V., & Speck-Planche, A. (2020). PTML modeling for Alzheimer’s disease: Design and prediction of virtual multi-target inhibitors of GSK3B, HDAC1, and HDAC6. Current Topics in Medicinal Chemistry, 20(19), 1661–1676. https://doi.org/10.2174/1568026620666200607190951
  • Kooistra, A. J., Munk, C., Hauser, A. S., & Gloriam, D. E. (2021). An online GPCR structure analysis platform. Nature Structural & Molecular Biology, 28(11), 875–878. https://doi.org/10.1038/s41594-021-00675-6
  • Lan, J., Lu, H., Samanta, D., Salman, S., Lu, Y., & Semenza, G. L. (2018). Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment. Proceedings of the National Academy of Sciences of the United States of America, 115(41), E9640–E9648. https://doi.org/10.1073/pnas.1809695115
  • Landrum, G., Tosco, P., Kelley, B., Vianello, R., Ric; Dalke, A., Cole, B., Swain, M., Turk, S., Dan, N., Vaucher, A., Kawashima, E., Wójcikowski, M., Pahl, A., Jp; Berenger, F., Varjo, J. L., O'Boyle, N., Cosgrove, D., Fuller, P., Jensen, J. H., … van Santen, J. (2020). Rdkit/Rdkit: 2019_09_3 (Q3 2019) release. Zenodo.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Li, C., Yao, J., Wei, W., Niu, Z., Zeng, X., Li, J., & Wang, J. (2022). Geometry-based molecular generation with deep constrained variational autoencoder. IEEE Transactions on Neural Networks and Learning Systems, PP, 1–10. https://doi.org/10.1109/TNNLS.2022.3147790
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • Li, X., Xu, Y., Yao, H., & Lin, K. (2020). Chemical space exploration based on recurrent neural networks: Applications in discovering kinase inhibitors. Journal of Cheminformatics, 12(1), 42. https://doi.org/10.1186/s13321-020-00446-3
  • Liu, S., Ding, W., Huang, W., Zhang, Z., Guo, Y., Zhang, Q., Wu, L., Li, Y., Qin, R., Li, J., Shi, T., Zhang, X., Lei, J., & Hu, W. (2022). Discovery of novel benzo[4,5]imidazo[1,2-a]pyrazin-1-amine-3-amide-one derivatives as anticancer human A2A adenosine receptor antagonists. Journal of Medicinal Chemistry, 65(13), 8933–8947. https://doi.org/10.1021/acs.jmedchem.2c00101
  • Ludwig, N., Yerneni, S. S., Azambuja, J. H., Gillespie, D. G., Menshikova, E. V., Jackson, E. K., & Whiteside, T. L. (2020). Tumor-derived exosomes promote angiogenesis via adenosine A2B receptor signaling. Angiogenesis, 23(4), 599–610. https://doi.org/10.1007/s10456-020-09728-8
  • Mallo-Abreu, A., Majellaro, M., Jespers, W., Azuaje, J., Caamaño, O., García-Mera, X., Brea, J. M., Loza, M. I., Gutiérrez-de-Terán, H., & Sotelo, E. (2019). Trifluorinated pyrimidine-based A2B antagonists: Optimization and evidence of stereospecific recognition. Journal of Medicinal Chemistry, 62(20), 9315–9330. https://doi.org/10.1021/acs.jmedchem.9b01340
  • Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., De Veij, M., Félix, E., Magariños, María, P., Mosquera, J. F., Mutowo, P., Nowotka, M., Gordillo-Marañón, M., Hunter, F., Junco, L., Mugumbate, G., Rodriguez-Lopez, M., Atkinson, F., Bosc, N., Radoux, C. J., Segura-Cabrera, A., Hersey, A., & Leach, Andrew, R. (2018). ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Research, 47(D1), D930–D940. https://doi.org/10.1093/nar/gky1075
  • Mittal, D., Sinha, D., Barkauskas, D., Young, A., Kalimutho, M., Stannard, K., Caramia, F., Haibe-Kains, B., Stagg, J., Khanna, K. K., Loi, S., & Smyth, M. J. (2016). Adenosine 2B receptor expression on cancer cells promotes metastasis. Cancer Research, 76(15), 4372–4382. https://doi.org/10.1158/0008-5472.CAN-16-0544
  • Moret, M., Friedrich, L., Grisoni, F., Merk, D., & Schneider, G. (2020). Generative molecular design in low data regimes. Nature Machine Intelligence, 2(3), 171–180. https://doi.org/10.1038/s42256-020-0160-y
  • Müller, C. E., Baqi, Y., Hinz, S., & Namasivayam, V. (2018). Medicinal chemistry of A2B adenosine receptors. In P. A. Borea, K. Varani, S. Gessi, S. Merighi, & F. Vincenzi (Eds.), The adenosine receptors (pp. 137–168). Springer International Publishing.
  • Owen, D., Wei, L., Dikov, M., Suman, S., Wu, R., Amann, J., Schweitzer, C., Ferguson, S., Smith, M., Castro, J., Bertino, E., Shields, P., He, K., Presley, C., Otterson, G., & Carbone, D. (2022). 585 Phase 1 dose escalation trial of the selective A2B adenosine receptor antagonist PBF-1129 in patients with metastatic non-small cell lung cancer (mNSCLC). Journal for ImmunoTherapy of Cancer, 10(Suppl 2), A612–A612.
  • Pearce, B. C., Sofia, M. J., Good, A. C., Drexler, D. M., & Stock, D. A. (2006). An empirical process for the design of high-throughput screening deck filters. Journal of Chemical Information and Modeling, 46(3), 1060–1068. https://doi.org/10.1021/ci050504m
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12(null), 2825–2830.
  • Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golovanov, S., Tatanov, O., Belyaev, S., Kurbanov, R., Artamonov, A., Aladinskiy, V., Veselov, M., Kadurin, A., Johansson, S., Chen, H., Nikolenko, S., Aspuru-Guzik, A., & Zhavoronkov, A. (2020). Molecular sets (MOSES): A benchmarking platform for molecular generation models. Frontiers in Pharmacology, 11, 565644. https://doi.org/10.3389/fphar.2020.565644
  • Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., & Klambauer, G. (2018). Fréchet ChemNet distance: A metric for generative models for molecules in drug discovery. Journal of Chemical Information and Modeling, 58(9), 1736–1741. https://doi.org/10.1021/acs.jcim.8b00234
  • Prieto-Díaz, R., González-Gómez, M., Fojo-Carballo, H., Azuaje, J., El Maatougui, A., Majellaro, M., Loza, M. I., Brea, J., Fernández-Dueñas, V., Paleo, M. R., Díaz-Holguín, A., Garcia-Pinel, B., Mallo-Abreu, A., Estévez, J. C., Andújar-Arias, A., García-Mera, X., Gomez-Tourino, I., Ciruela, F., Salas, C. O., Gutiérrez-de-Terán, H., & Sotelo, E. (2023). Exploring the effect of halogenation in a series of potent and selective A2B adenosine receptor antagonists. Journal of Medicinal Chemistry, 66(1), 890–912. https://doi.org/10.1021/acs.jmedchem.2c01768
  • Prykhodko, O., Johansson, S. V., Kotsias, P.-C., Arús-Pous, J., Bjerrum, E. J., Engkvist, O., & Chen, H. (2019). A de novo molecular generation method using latent vector based generative adversarial network. Journal of Cheminformatics, 11(1), 74. https://doi.org/10.1186/s13321-019-0397-9
  • Reddy, G. L., Sarma, R., Liu, S., Huang, W., Lei, J., Fu, J., & Hu, W. (2021). Design, synthesis and biological evaluation of novel scaffold benzo[4,5]imidazo [1,2-a]pyrazin-1-amine: Towards adenosine A2A receptor (A2A AR) antagonist. European Journal of Medicinal Chemistry, 210, 113040. https://doi.org/10.1016/j.ejmech.2020.113040
  • Rogers, D., & Hahn, M. (2010). Extended-connectivity fingerprints. Journal of Chemical Information and Modeling, 50(5), 742–754. https://doi.org/10.1021/ci100050t
  • Segler, M. H. S., Kogej, T., Tyrchan, C., & Waller, M. P. (2018). Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Central Science, 4(1), 120–131. https://doi.org/10.1021/acscentsci.7b00512
  • Seo, S., Lim, J., & Kim, W. Y. (2023). Molecular generative model via retrosynthetically prepared chemical building block assembly. Advanced Science, 10(8), 2206674. https://doi.org/10.1002/advs.202206674
  • Speck-Planche, A. (2018). Combining ensemble learning with a fragment-based topological approach to generate new molecular diversity in drug discovery: In silico design of Hsp90 inhibitors. ACS Omega, 3(11), 14704–14716. https://doi.org/10.1021/acsomega.8b02419
  • Speck-Planche, A., & Scotti, M. T. (2019). BET bromodomain inhibitors: Fragment-based in silico design using multi-target QSAR models. Molecular Diversity, 23(3), 555–572. https://doi.org/10.1007/s11030-018-9890-8
  • Stewart, M., Steinig, A. G., Ma, C., Song, J.-P., McKibben, B., Castelhano, A. L., & MacLennan, S. J. (2004). [3H]OSIP339391, a selective, novel, and high affinity antagonist radioligand for adenosine A2B receptors. Biochemical Pharmacology, 68(2), 305–312. https://doi.org/10.1016/j.bcp.2004.03.026
  • Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P. (2003). Random forest: A classification and regression tool for compound classification and QSAR modeling. Journal of Chemical Information and Computer Sciences, 43(6), 1947–1958. https://doi.org/10.1021/ci034160g
  • Tan, X., Li, C., Yang, R., Zhao, S., Li, F., Li, X., Chen, L., Wan, X., Liu, X., Yang, T., Tong, X., Xu, T., Cui, R., Jiang, H., Zhang, S., Liu, H., & Zheng, M. (2022). Discovery of pyrazolo[3,4-d]pyridazinone derivatives as selective DDR1 inhibitors via deep learning based design, synthesis, and biological evaluation. Journal of Medicinal Chemistry, 65(1), 103–119. https://doi.org/10.1021/acs.jmedchem.1c01205
  • Tay, A. H. M., Prieto-Díaz, R., Neo, S., Tong, L., Chen, X., Carannante, V., Önfelt, B., Hartman, J., Haglund, F., Majellaro, M., Azuaje, J., Garcia-Mera, X., Brea, J. M., Loza, M. I., Jespers, W., Gutierrez-de-Teran, H., Sotelo, E., & Lundqvist, A. (2022). A2B adenosine receptor antagonists rescue lymphocyte activity in adenosine-producing patient-derived cancer models. Journal for Immunotherapy of Cancer, 10(5), e004592. https://doi.org/10.1136/jitc-2022-004592
  • Temirak, A., Schlegel, J. G., Voss, J. H., Vaaßen, V. J., Vielmuth, C., Claff, T., & Müller, C. E. (2022). Irreversible antagonists for the adenosine A(2B) receptor. Molecules, 27(12), 3792. https://doi.org/10.3390/molecules27123792
  • Thimm, D., Schiedel, A. C., Sherbiny, F. F., Hinz, S., Hochheiser, K., Bertarelli, D. C. G., Maass, A., & Müller, C. E. (2013). Ligand-specific binding and activation of the human adenosine A2B receptor. Biochemistry, 52(4), 726–740. https://doi.org/10.1021/bi3012065
  • Tong, X., Liu, X., Tan, X., Li, X., Jiang, J., Xiong, Z., Xu, T., Jiang, H., Qiao, N., & Zheng, M. (2021). Generative models for de novo drug design. Journal of Medicinal Chemistry, 64(19), 14011–14027. https://doi.org/10.1021/acs.jmedchem.1c00927
  • Vecchio, E. A., White, P. J., & May, L. T. (2019). The adenosine A2B G protein-coupled receptor: Recent advances and therapeutic implications. Pharmacology & Therapeutics, 198, 20–33. https://doi.org/10.1016/j.pharmthera.2019.01.003
  • Vijayan, D., Young, A., Teng, M. W. L., & Smyth, M. J. (2017). Targeting immunosuppressive adenosine in cancer. Nature Reviews. Cancer, 17(12), 709–724. https://doi.org/10.1038/nrc.2017.86
  • Wang, J., Hsieh, C.-Y., Wang, M., Wang, X., Wu, Z., Jiang, D., Liao, B., Zhang, X., Yang, B., He, Q., Cao, D., Chen, X., & Hou, T. (2021). Multi-constraint molecular generation based on conditional transformer, knowledge distillation and reinforcement learning. Nature Machine Intelligence, 3(10), 914–922. https://doi.org/10.1038/s42256-021-00403-1
  • Wang, M., Hou, S., Wei, Y., Li, D., & Lin, J. (2021). Discovery of novel dual adenosine A1/A2A receptor antagonists using deep learning, pharmacophore modeling and molecular docking. PLoS Computational Biology, 17(3), e1008821. https://doi.org/10.1371/journal.pcbi.1008821
  • Wang, M., Hsieh, C.-Y., Wang, J., Wang, D., Weng, G., Shen, C., Yao, X., Bing, Z., Li, H., Cao, D., & Hou, T. (2022). RELATION: A deep generative model for structure-based de novo drug design. Journal of Medicinal Chemistry, 65(13), 9478–9492. https://doi.org/10.1021/acs.jmedchem.2c00732
  • Wang, M., Wang, Z., Sun, H., Wang, J., Shen, C., Weng, G., Chai, X., Li, H., Cao, D., & Hou, T. (2022). Deep learning approaches for de novo drug design: An overview. Current Opinion in Structural Biology, 72, 135–144. https://doi.org/10.1016/j.sbi.2021.10.001
  • Wang, X., Jespers, W., Prieto-Díaz, R., Majellaro, M., Ijzerman, A. P., van Westen, G. J. P., Sotelo, E., Heitman, L. H., & Gutiérrez-de-Terán, H. (2021). Identification of V6.51L as a selectivity hotspot in stereoselective A2B adenosine receptor antagonist recognition. Scientific Reports, 11(1), 14171. https://doi.org/10.1038/s41598-021-93419-x
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–w303. https://doi.org/10.1093/nar/gky427
  • Weininger, D. (1988). SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information and Computer Sciences, 28(1), 31–36. https://doi.org/10.1021/ci00057a005
  • Wigh, D. S., Goodman, J. M., & Lapkin, A. A. (2022). A review of molecular representation in the age of machine learning. WIREs Computational Molecular Science, 12(5), e1603. https://doi.org/10.1002/wcms.1603
  • Wildman, S. A., & Crippen, G. M. (1999). Prediction of physicochemical parameters by atomic contributions. Journal of Chemical Information and Computer Sciences, 39(5), 868–873. https://doi.org/10.1021/ci990307l
  • Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science: A Publication of the Protein Society, 27(1), 293–315. https://doi.org/10.1002/pro.3330
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Yan, L., Bertarelli, D. C. G., Hayallah, A. M., Meyer, H., Klotz, K.-N., & Müller, C. E. (2006). A new synthesis of sulfonamides by aminolysis of p-nitrophenylsulfonates yielding potent and selective adenosine A2B receptor antagonists. Journal of Medicinal Chemistry, 49(14), 4384–4391. https://doi.org/10.1021/jm060277v
  • Yang, Z., Shi, S., Fu, L., Lu, A., Hou, T., & Cao, D. (2023). Matched molecular pair analysis in drug discovery: Methods and recent applications. Journal of Medicinal Chemistry, 66(7), 4361–4377. https://doi.org/10.1021/acs.jmedchem.2c01787
  • Zhang, L., Tan, J., Han, D., & Zhu, H. (2017). From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discovery Today, 22(11), 1680–1685. https://doi.org/10.1016/j.drudis.2017.08.010
  • Zhang, O., Zhang, J., Jin, J., Zhang, X., Hu, R., Shen, C., Cao, H., Du, H., Kang, Y., Deng, Y., Liu, F., Chen, G., Hsieh, C.-Y., & Hou, T. (2023). ResGen is a pocket-aware 3D molecular generation model based on parallel multiscale modelling. Nature Machine Intelligence, 5(9), 1020–1030. https://doi.org/10.1038/s42256-023-00712-7
  • Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., Veselov, M. S., Aladinskiy, V. A., Aladinskaya, A. V., Terentiev, V. A., Polykovskiy, D. A., Kuznetsov, M. D., Asadulaev, A., Volkov, Y., Zholus, A., Shayakhmetov, R. R., Zhebrak, A., Minaeva, L. I., Zagribelnyy, B. A., Lee, L. H., Soll, R., Madge, D., … Aspuru-Guzik, A. (2019). Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology, 37(9), 1038–1040. https://doi.org/10.1038/s41587-019-0224-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.