158
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In silico evaluation of S-adenosyl-L-homocysteine analogs as inhibitors of nsp14-viral cap N7 methyltranferase and PLpro of SARS-CoV-2: synthesis, molecular docking, physicochemical data, ADMET and molecular dynamics simulations studies

, , , , , , , ORCID Icon, & show all
Received 18 Jul 2023, Accepted 13 Dec 2023, Published online: 26 Dec 2023

References

  • Ahmed-Belkacem, R., Sutto-Ortiz, P., Guiraud, M., Canard, B., Vasseur, J. J., Decroly, E., & Debart, F. (2020). Synthesis of adenine dinucleosides SAM analogs as specific inhibitors of SARS-CoV nsp14 RNA cap guanine-N7-methyltransferase. European Journal of Medicinal Chemistry, 201, 112557. https://doi.org/10.1016/j.ejmech.2020.112557
  • Amin, S. A., Banerjee, S., Ghosh, K., Gayen, S., & Jha, T. (2021). Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Bioorganic & Medicinal Chemistry, 29, 115860. https://doi.org/10.1016/j.bmc.2020.115860
  • Aouadi, W., Eydoux, C., Coutard, B., Martin, B., Debart, F., Vasseur, J. J., Contreras, J. M., Morice, C., Quérat, G., Jung, M. L., Canard, B., Guillemot, J. C., & Decroly, E. (2017). Toward the identification of viral cap-methyltransferase inhibitors by fluorescence screening assay. Antiviral Research, 144, 330–339. https://doi.org/10.1016/j.antiviral.2017.06.021
  • Arya, R., Kumari, S., Pandey, B., Mistry, H., Bihani, S. C., Das, A., Prashar, V., Gupta, G. D., Panicker, L., & Kumar, M. (2021). Structural insights into SARS-CoV-2 proteins. Journal of Molecular Biology, 433(2), 166725. https://doi.org/10.1016/j.jmb.2020.11.024
  • Bhattacharya, U., Panda, S. K., Gupta, P. S. S., & Rana, M. K. (2022). Inhibitors of Heptosyltransferase I to prevent heptose transfer against antibiotic resistance of E. coli: Energetics and stability analysis by DFT and molecular dynamics. Journal of Molecular Structure, 1253, 132258. https://doi.org/10.1016/j.molstruc.2021.132258
  • Bobiļeva, O., Bobrovs, R., Kaņepe, I., Patetko, L., Kalniņš, G., Šišovs, M., Bula, A. L., Gri Nberga, S., Borodušķis, M. R., Ramata-Stunda, A., Rostoks, N., Jirgensons, A., Ta Rs, K., & Jaudzems, K. (2021). Potent SARS-CoV-2 mRNA cap methyltransferase inhibitors by bioisosteric replacement of methionine in SAM cosubstrate. ACS Medicinal Chemistry Letters, 12(7), 1102–1107. https://doi.org/10.1021/acsmedchemlett.1c00140
  • Bobrovs, R., Kanepe, I., Narvaiss, N., Patetko, L., Kalnins, G., Sisovs, M., Bula, A. L., Grinberga, S., Boroduskis, M., Stunda, A. R., Rostoks, N., Jirgensons, A., Tars, K., & Jaudzems, K. (2022). Discovery of SARS-CoV-2 Nsp14 and Nsp16 methyltransferase inhibitors by high-throughput virtual screening. Pharmaceuticals, 14(12), 1243. https://doi.org/10.3390/ph14121243
  • Bouvet, M., Debarnot, C., Imbert, I., Selisko, B., Snijder, E. J., Canard, B., & Decroly, E. (2010). In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathogens, 6(5), 1-13 https://doi.org/10.1371/annotation/a0dde376-2eb1-4ce3-8887d29f5ba6f162
  • Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T., & Guo, D. (2009). Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3484–3489. https://doi.org/10.1073/pnas.0808790106
  • Cino, E. A., Choy, W. ‑Y., & Karttunen, M. (2012). Comparison of secondary structure formation using 10 different force fields in microsecond molecular dynamics simulations. Journal of Chemical Theory and Computation, 8(8), 2725–2740. https://doi.org/10.1021/ct300323g
  • Cong, Y., Verlhac, P., & Reggiori, F. (2017). The interaction between nidovirales and autophagy components. Viruses, 9(7), 182. https://doi.org/10.3390/v9070182
  • Devaraj, S. G., Wang, N., Chen, Z., Chen, Z., Tseng, M., Barretto, N., Lin, R., Peters, C. J., Tseng, C. T. K., Baker, S. C., & Li, K. (2007). Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. The Journal of Biological Chemistry, 282(44), 32208–32221. https://doi.org/10.1074/jbc.M704870200
  • Devkota, K., Schapira, M., Perveen, S., Yazdi, A. K., Li, F., Chau, I., Ghiabi, P., Hajian, T., Loppnau, P., Bolotokova, A., Satchell, K. J. F., Wang, K., Li, D., Liu, J., Smil, D., Luo, M., Jin, J., Fish, P. V., Brown, P. J., & Vedadi, M. (2021). Probing the SAM binding site of SARS-CoV-2 Nsp14 in vitro using SAM competitive inhibitors guides developing selective bisubstrate inhibitors. SLAS Discovery: Advancing Life Sciences R & D, 26(9), 1200–1211. https://doi.org/10.1177/24725552211026261
  • Dilucca, M., Forcelloni, S., Pavlopoulou, A., G., Georgakilas, A., & Giansanti, A. (2020). Codon usage and evolutionary rates of the 2019-nCoV genes. bioRxiv Preprint, 1, 1–20. https://doi.org/10.1101/2020.03.25.006569
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M. Y., Pieper, U., & Sali, A. (2006). Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics (Ch. 5, Unit 5-6). https://doi.org/10.1002/0471250953.bi0506s15
  • Fu, Z., Huang, B., Tang, J., Liu, S., Liu, M., Ye, Y., Liu, Z., Xiong, Y., Zhu, W., Cao, D., Li, J., Niu, X., Zhou, H., Zhao, Y. J., Zhang, G., & Huang, H. (2021). The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nature Communications, 12(1), 488. https://doi.org/10.1038/s41467-020-20718-8
  • Gao, X., Qin, B., Chen, P., Zhu, K., Hou, P., Wojdyla, J. A., Wang, M., & Cui, S. (2021). Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharmaceutica Sinica. B, 11(1), 237–245. https://doi.org/10.1016/j.apsb.2020.08.014
  • Guillerm, G., Guillerm, D., Vandenplas-Witkowki, C., Rogniaux, H., Carte, N., Leize, E., Van Dorsselaer, A., De Clercq, E., & Lambert, C. (2001). Synthesis, mechanism of action, and antiviral activity of a new series of covalent mechanism-based inhibitors of S-adenosyl-l-homocysteine hydrolase. Journal of Medicinal Chemistry, 44(17), 2743–2752. https://doi.org/10.1021/jm0108350
  • Gupta, P. S. S., Biswal, S., Panda, S. K., Ray, A. K., & Rana, M. K. (2022). Binding mechanism and structural insights into the identified protein target of COVID-19 and importin-α with in-vitro effective drug ivermectin. Journal of Biomolecular Structure & Dynamics, 40(5), 2217–2226. https://doi.org/10.1080/07391102.2020.1839564
  • Gupta, P. S. S., Biswal, S., Singh, D., & Rana, M. K. (2021). Binding insight of clinically oriented drug famotidine with the identified potential target of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 39(14), 5327–5333. https://doi.org/10.1080/07391102.2020.1784795
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472.
  • Hildesheim, J., Hildesheim, R., & Lederer, E. (1972). New syntheses of S-adenosyl homocysteine analogues, potential methyltransferase inhibitors. Biochimie, 54(4), 431–437. https://doi.org/10.1016/s0300-9084(72)80226-8
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • https://covid19.who.int. (2023).
  • Jacomini, A. P., Silva, M. J. V., Silva, R. G. M., Gonçalves, D. S., Volpato, H., Basso, E. A., Paula, F. R., Nakamura, C. V., Sarragiotto, M. H., & Rosa, F. A. (2016). Synthesis and evaluation against Leishmania amazonensis of novel pyrazolo[3,4-d]pyridazinone- N-acylhydrazone-(bi)thiophene hybrids. European Journal of Medicinal Chemistry, 124, 340–349. https://doi.org/10.1016/j.ejmech.2016.08.048
  • Jung, E., Soto-Acosta, R., Xie, J., Wilson, D. J., Dreis, C. D., Majima, R., Edwards, T. C., Geraghty, R. J., & Chen, L. (2022). Bisubstrate inhibitors of severe acute respiratory syndrome coronavirus-2 nsp14 methyltransferase. ACS Medicinal Chemistry Letters, 13(9), 1477–1484. https://doi.org/10.1021/acsmedchemlett.2c00265
  • Kang, S., Yang, M., Hong, Z., Zhang, L., Huang, Z., Chen, X., He, S., Zhou, Z., Zhou, Z., Chen, Q., Yan, Y., Zhang, C., Shan, H., & Chen, S. (2020). Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharmaceutica Sinica. B, 10(7), 1228–1238. https://doi.org/10.1016/j.apsb.2020.04.009
  • Kikugawa, K., & Ichino, M. (1971). Direct halogenation of sugar moiety of nucleoside. Tetrahedron Letters, 12(2), 87–90. https://doi.org/10.1016/S0040-4039(01)96366-X
  • Kim, Y., Wower, J., Maltseva, N., Chang, C., Jedrzejczak, R., Wilamowski, M., Kang, S., Nicolaescu, V., Randall, G., Michalska, K., & Joachimiak, A. (2021). Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2. Communications Biology, 4(1), 193. https://doi.org/10.1038/s42003-021-01735-9
  • Kottur, J., Rechkoblit, O., Quintana-Feliciano, R., Sciaky, D., & Aggarwal, A. K. (2022). High-resolution structures of the SARS-CoV-2 N7-methyltransferase inform therapeutic development. Nature Structural & Molecular Biology, 29(9), 850–853. https://doi.org/10.1038/s41594-022-00828-1
  • Krafcikova, P., Silhan, J., Nencka, R., & Boura, E. (2020). Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nature Communications, 11(1), 3717. https://doi.org/10.1038/s41467-020-17495-9
  • Kumar, R., Srivastava, R., Singh, R. K., Surolia, A., & Rao, D. N. (2008). Activation and inhibition of DNA methyltransferases by S-adenosyl-l-homocysteine analogues. Bioorganic & Medicinal Chemistry, 16(5), 2276–2285. https://doi.org/10.1016/j.bmc.2007.11.075
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa–A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Li, D., Luan, J., & Zhang, L. (2021). Molecular docking of potential SARS-CoV-2 papain-like protease inhibitors. Biochemical and Biophysical Research Communications, 538, 72–79. https://doi.org/10.1016/j.bbrc.2020.11.083
  • Li, G., Hilgenfeld, R., Whitley, R., & Clercq, E. D. (2023). Therapeutic strategies for COVID-19: Progress and lessons learned. Nature Reviews. Drug Discovery, 22(6), 449–475. https://doi.org/10.1038/s41573-023-00672-y
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Liu, C., Zhu, X., Lu, Y., Zhang, X., Jia, X., & Yang, T. (2021). Potential treatment with Chinese and Western medicine targeting NSP14 of SARS-CoV-2. Journal of Pharmaceutical Analysis, 11(3), 272–277. https://doi.org/10.1016/j.jpha.2020.08.002
  • Ma, Y., Wu, L., Shaw, N., Gao, Y., Wang, J., Sun, Y., Lou, Z., Yan, L., Zhang, R., & Rao, Z. (2015). Structural basis and functional analysis of the SARS coronavirus nsp14–nsp10 complex. Proceedings of the National Academy of Sciences of the United States of America, 112(30), 9436–9441. https://doi.org/10.1073/pnas.1508686112
  • Mahalapbutr, P., Kongtaworn, N., & Rungrotmongkol, T. (2020). Structural insight into the recognition of S-adenosyl-L-homocysteine and sinefungin in SARS-CoV-2 Nsp16/Nsp10 RNA cap 2'-O-Methyltransferase. Computational and Structural Biotechnology Journal, 18, 2757–2765. https://doi.org/10.1016/j.csbj.2020.09.032
  • Meza, J. C. (2010). Steepest descent. WIREs Computational Statistics, 2(6), 719–722. https://doi.org/10.1002/wics.117
  • Michalska, K., Kim, Y., Jedrzejczak, R., Maltseva, N. I., Stols, L., Endres, M., & Joachimiak, A. (2020). Crystal structures of SARS-CoV-2 ADP-ribose phosphatase: From the apo form to ligand complexes. IUCrJ, 7(Pt 5), 814–824. https://doi.org/10.1107/S2052252520009653
  • Mousavizadeh, L., & Ghasemi, S. (2021). Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology, and Infection = Wei Mian yu Gan Ran za Zhi, 54(2), 159–163. https://doi.org/10.1016/j.jmii.2020.03.022
  • Newman, J. A., Douangamath, A., Yadzani, S., Yosaatmadja, Y., Aimon, A., Brandão-Neto, J., Dunnett, L., Gorrie-Stone, T., Skyner, R., Fearon, D., Schapira, M., von Delft, F., & Gileadi, O. (2021). Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nature Communications, 12(1), 4848. https://doi.org/10.1038/s41467-021-25166-6
  • Obr, M., Ricana, C. L., Nikulin, N., Feathers, J. P. R., Klanschnig, M., Thader, A., Johnson, M. C., Vogt, V. M., Schur, F. K. M., & Dick, R. A. (2021). Structure of the mature Rous sarcoma virus lattice reveals a role for IP6 in the formation of the capsid hexamer. Nature Communications, 12(1), 3226. https://doi.org/10.1038/s41467-021-23506-0
  • Panda, S. K., Saxena, S., & Guruprasad, L. (2020). Homology modeling, docking and structure-based virtual screening for new inhibitor identification of Klebsiella pneumoniae heptosyltransferase-III. Journal of Biomolecular Structure & Dynamics, 38(7), 1887–1902. https://doi.org/10.1080/07391102.2019.1624296
  • Panda, S. K., Saxena, S., Gupta, P. S. S., & Rana, M. K. (2021). Inhibitors of Plasmepsin X Plasmodium falciparum: Structure-based pharmacophore generation and molecular dynamics simulation. Journal of Molecular Liquids, 340, 116851. https://doi.org/10.1016/j.molliq.2021.116851
  • Poduri, R., Joshi, G., & Jagadeesh, G. (2020). Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of Covid-19. Cellular Signalling, 74, 109721. https://doi.org/10.1016/j.cellsig.2020.109721
  • Ray, A. K., Gupta, P. S. S., Panda, S. K., Biswal, S., Bhattacharya, U., & Rana, M. K. (2022). Repurposing of FDA-approved drugs as potential inhibitors of the SARS-CoV-2 main protease: Molecular insights into improved therapeutic discovery. Computers in Biology and Medicine, 142, 105183. https://doi.org/10.1016/j.compbiomed.2021.105183
  • Rut, W., Lv, Z., Zmudzinski, M., Patchett, S., Nayak, D., Snipas, S. J., Oualid, F. E., Huang, T. T., Bekes, M., Drag, M., & Olsen, S. K. (2020). Activity profiling and structures of inhibitor-bound SARS-CoV-2-PLpro protease provides a framework for anti-COVID-19 drug design. bioRxiv Preprint, 6, 1–18. https://doi.org/10.1101/2020.04.29.068890
  • Saramago, M., Bárria, C., Costa, V. G., Souza, C. S., Viegas, S. C., Domingues, S., Lousa, D., Soares, C. M., Arraiano, C. M., & Matos, R. G. (2021). New targets for drug design: Importance of nsp14/nsp10 complex formation for the 3’‐5’exoribonucleolytic activity on SARS‐CoV‐2. The FEBS Journal, 288(17), 5130–5147. https://doi.org/10.1111/febs.15815
  • Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: Current knowledge. Virology Journal, 16(1), 69. https://doi.org/10.1186/s12985-019-1182-0
  • Selvaraj, C., Dinesh, D. C., Panwar, U., Abhirami, R., Boura, E., & Singh, S. K. (2021). Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19. Journal of Biomolecular Structure & Dynamics, 39(13), 4582–4593. https://doi.org/10.1080/07391102.2020.1778535
  • Sinha, S., Srivastava, R., Clercq, E. D., & Singh, R. K. (2004). Synthesis and antiviral properties of arabino and ribonucleosides of 1,3-dideazadenine, 4-nitro-1,3- dideazapurine and diketopiperazine. Nucleosides, Nucleotides & Nucleic Acids, 23(12), 1815–1824. https://doi.org/10.1081/NCN-200040614
  • Shen, Z., Ratia, K., Cooper, L., Kong, D., Lee, H., Kwon, Y., Li, Y., Alqarni, S., Huang, F., Dubrovskyi, O., Rong, L., Thatcher, G. R. J., & Xiong, R. (2022). Design of SARS-CoV-2 PLpro inhibitors for COVID-19 antiviral therapy leveraging binding cooperativity. Journal of Medicinal Chemistry, 65(4), 2940–2955. https://doi.org/10.1021/acs.jmedchem.1c01307
  • Showalter, S. A., & Brüschweiler, R. (2007). Validation of molecular dynamics simulations of biomolecules using NMR spin relaxation as benchmarks: Application to the AMBER99SB force field. Journal of Chemical Theory and Computation, 3(3), 961–975. https://doi.org/10.1021/ct7000045
  • Srivastava, R., Bhargava, A., & Singh, R. K. (2007). Synthesis and antimicrobial activity of some novel nucleoside analogues of adenosine and 1,3-dideazadenosine. Bioorganic & Medicinal Chemistry Letters, 17(22), 6239–6244. https://doi.org/10.1016/j.bmcl.2007.09.028
  • Srivastava, R., Gupta, S. K., Naaz, F., Gupta, P. S. S., Yadav, M., Singh, V. K., Singh, A., Rana, M. K., Gupta, S. K., Schols, D., & Singh, R. K. (2020). Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV. Computational Biology and Chemistry, 89, 107400. https://doi.org/10.1016/j.compbiolchem.2020.107400
  • Srivastava, R., Gupta, S. K., Naaz, F., Sen Gupta, P. S., Yadav, M., Singh, V. K., Panda, S. K., Biswal, S., Rana, M. K., Gupta, S. K., Schols, D., & Singh, R. K. (2023). Exploring antiviral potency of N-1 substituted pyrimidines against HIV-1 and other DNA/RNA viruses: Design, synthesis, characterization, ADMET analysis, docking, molecular dynamics and biological activity. Computational Biology and Chemistry, 106, 107910. https://doi.org/10.1016/j.compbiolchem.2023.107910
  • Štefek, M., Chalupská, D., Chalupský, K., Zgarbová, M., Dvořáková, A., Krafčíková, P., Li, A. S. M., Šála, M., Dejmek, M., Otava, T., Chaloupecká, E., Kozák, J., Kozic, J., Vedadi, M., Weber, J., Mertlíková-Kaiserová, H., & Nencka, R. (2023). Rational design of highly potent SARS-CoV-2 nsp14 methyltransferase inhibitors. ACS Omega, 8(30), 27410–27418. https://doi.org/10.1021/acsomega.3c02815
  • Tahir, M. (2021). Coronavirus genomic nsp14-ExoN, structure, role, mechanism, and potential application as a drug target. Journal of Medical Virology, 93(7), 4258–4264. https://doi.org/10.1002/jmv.27009
  • Tian, D., Liu, Y., Liang, C., Xin, L., Xie, X., Zhang, D., Wan, M., Li, H., Fu, X., Liu, H., & Cao, W. (2021). An update review of emerging small-molecule therapeutic options for COVID-19. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 137, 111313. https://doi.org/10.1016/j.biopha.2021.111313
  • Verdecchia, P., Cavallini, C., Spanevello, A., & Angeli, F. (2020). The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. European Journal of Internal Medicine, 76, 14–20. https://doi.org/10.1016/j.ejim.2020.04.037
  • Verma, D., Mitra, D., Paul, M., Chaudhary, P., Kamboj, A., Thatoi, H., Janmeda, P., Jain, D., Panneerselvam, P., Shrivastav, R., Pant, K., & Mohapatra, P. K. D. (2021). Potential inhibitors of SARS-CoV-2 (COVID 19) proteases PLpro and Mpro/3CLpro: Molecular docking and simulation studies of three pertinent medicinal plant natural components. Current Research in Pharmacology and Drug Discovery, 2, 100038. https://doi.org/10.1016/j.crphar.2021.100038
  • Wan, Y., Shang, J., Graham, R., S., Baric, R., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology, 94(7), e00127-20. https://doi.org/10.1128/JVI.00127-20
  • Wit, E., de, N., van Doremalen, D., Falzarano, J., & Munster, V. (2016). SARS and MERS: Recent insights into emerging coronaviruses. Nature Reviews. Microbiology, 14(8), 523–534. https://doi.org/10.1038/nrmicro.2016.81
  • Wong, L. Y. R., Lui, P. Y., & Jin, D. Y. (2016). A molecular arms race between host innate antiviral response and emerging human coronaviruses. Virologica Sinica, 31(1), 12–23. https://doi.org/10.1007/s12250-015-3683-3
  • World Health Organization. https://www.who.int/publications/m/item/summary-of-probable sars-cases-with-onset-of-illness-from-1-november-2002-to-31-july-2003
  • Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., Sheng, J., Quan, L., Xia, Z., Tan, W., Cheng, G., & Jiang, T. (2020). Genome Composition and Divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe, 27(3), 325–328. https://doi.org/10.1016/j.chom.2020.02.001
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Yin, W., Mao, C., Luan, X., Shen, D. D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang, S., Xie, Y. C., Tian, G., Jiang, H. W., Tao, S. C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., … Xu, H. E. (2020). Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 368(6498), 1499–1504. https://doi.org/10.1126/science.abc1560
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.