185
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A computational investigation of potential plant-based bioactive compounds against drug-resistant Staphylococcus aureus of multiple target proteins

ORCID Icon, , &
Received 09 Jun 2023, Accepted 13 Dec 2023, Published online: 22 Dec 2023

References

  • Alhadrami, H. A., Hamed, A. A., Hassan, H. M., Belbahri, L., Rateb, M. E., & Sayed, A. M. (2020). Flavonoids as potential anti-MRSA agents through modulation of PBP2a: A computational and experimental study. Antibiotics, 9(9), 562. https://doi.org/10.3390/antibiotics9090562
  • Aras, M., & Tonguç Yayintaş, Ö. (2022). In silico analysis of quercetin, gallic acid, oleanolic acid, and ursolic acid on diabetes mellitus. Troia Medical Journal, 3(3), 100–110. https://doi.org/10.55665/troia
  • Bagnoli, F. (2017). Staphylococcus aureus toxin antibodies: Good companions of antibiotics and vaccines. Virulence, 8(7), 1037–1042. https://doi.org/10.1080/21505594.2017.1295205
  • Barik, K., Arya Ajay, P. K., Singh, K., & Kumar, A. (2023). Identification of phytochemical inhibitors targeting phosphate acetyltransferase of Mycoplasma genitalium: Insights from virtual screening and molecular dynamics studies. Molecular Diversity, 1–12. https://doi.org/10.1007/s11030-023-10681-z
  • Bharadwaj, S., Dubey, A., Yadava, U., Mishra, S. K., Kang, S. G., & Dwivedi, V. D. (2021). Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 M pro. Briefings in Bioinformatics, 22(2), 1361–1377. https://doi.org/10.1093/bib/bbaa382
  • Bowie, J. U., Lüthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253(5016), 164–170. https://doi.org/10.1126/science.1853201
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
  • Chukwuma, I. F., Nworah, F. N., Apeh, V. O., Omeje, K. O., Nweze, E. J., Asogwa, C. D., & Chidike Ezeorba, T. P. (2022). Phytochemical characterization, functional nutrition, and anti-diabetic potentials of Leptadenia hastata (Pers) Decne leaves: In silico and in vitro studies. Bioinformatics and Biology Insights, 16, 11779322221115436. https://doi.org/10.1177/11779322221115436
  • Collignon, P. J., Conly, J. M., Andremont, A., McEwen, S. A., Aidara-Kane, A., Agerso, Y., Andremont, A., Collignon, P., Conly, J., Dang Ninh, T., Donado-Godoy, P., Fedorka-Cray, P., Fernandez, H., Galas, M., Irwin, R., Karp, B., Matar, G., McDermott, P., McEwen, S., … Woo, G.-J, World Health, and Organization Advisory. (2016). World Health Organization ranking of antimicrobials according to their importance in human medicine: A critical step for developing risk management strategies to control antimicrobial resistance from food animal production. Clinical Infectious Diseases, 63(8), 1087–1093. https://doi.org/10.1093/cid/ciw475
  • Colovos, C., & Yeates, T. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Das, N., Madhavan, J., Selvi, A., & Das, D. (2019). An overview of cephalosporin antibiotics as emerging contaminants: A serious environmental concern. 3 Biotech, 9(6), 231. https://doi.org/10.1007/s13205-019-1766-9
  • Dashtbani-Roozbehani, A., & Brown, M. H. (2021). Efflux pump mediated antimicrobial resistance by Staphylococci in health-related environments: Challenges and the quest for inhibition. Antibiotics, 10(12), 1502. https://doi.org/10.3390/antibiotics10121502
  • de Morais Oliveira-Tintino, C. D., Tintino, S. R., Limaverde, P. W., Figueredo, F. G., Campina, F. F., da Cunha, F. A. B., da Costa, R. H. S., Pereira, P. S., Lima, L. F., de Matos, Y. M. L. S., Coutinho, H. D. M., Siqueira-Júnior, J. P., Balbino, V. Q., & da Silva, T. G. (2018). Inhibition of the essential oil from Chenopodium Ambrosioides L. and α-terpinene on the NorA efflux-pump of Staphylococcus aureus. Food Chemistry, 262(4), 72–77. https://doi.org/10.1016/j.foodchem.2018.04.040
  • Forrest, R. D. (1982). Early history of wound treatment. Journal of the Royal Society of Medicine, 75(3), 198–205. https://doi.org/10.1177/014107688207500310
  • Foster, T. J. (2017). Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews, 41(3), 430–449. https://doi.org/10.1093/femsre/fux007
  • Fritsche, T. R., Sader, H. S., & Jones, R. N. (2008). Antimicrobial activity of ceftobiprole, a novel anti–methicillin-resistant Staphylococcus aureus cephalosporin, tested against contemporary pathogens: Results from the SENTRY antimicrobial surveillance program (2005–2006.)Diagnostic Microbiology and Infectious Disease, 61(1), 86–95. https://doi.org/10.1016/j.diagmicrobio.2008.02.008
  • Gorlenko, C. L., Kiselev, H. Y., Budanova, E. V., Zamyatnin, A. A., Jr., & Ikryannikova, L. N. (2020). Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: New heroes or worse clones of antibiotics ? Antibiotics, 9(4), 170. https://doi.org/10.3390/antibiotics9040170
  • Gowtham, H. G.,Ahmed, F.,Anandan, S.,Shivakumara, C. S.,Bilagi, A.,Pradeep, S.,Shivamallu, C.,Shati, A. A.,Alfaifi, M. Y.,Elbehairi, S. E. I.,Achar, R. R.,Silina, E.,Stupin, V.,Murali, M., &Kollur, S. P. (2023). In Silico Computational Studies of Bioactive Secondary Metabolites from Wedelia trilobata against Anti-Apoptotic B-Cell Lymphoma-2 (Bcl-2) Protein Associated with Cancer Cell Survival and Resistance. Molecules, 28(4), 1588 10.3390/molecules28041588
  • Harkins, C. P., Pichon, B., Doumith, M., Parkhill, J., Westh, H., Tomasz, A., De Lencastre, H., Bentley, S. D., Kearns, A. M., & Holden, M. T. G. (2017). Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biology, 18(1), 130. https://doi.org/10.1186/s13059-017-1252-9
  • Hilchie, A. L., Wuerth, K., & Hancock, R. E. W. (2013). Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nature Chemical Biology, 9(12), 761–768. https://doi.org/10.1038/nchembio.1393
  • Imming, P., Sinning, C., & Meyer, A. (2006). Drugs, their targets and the nature and number of drug targets. Nature Reviews-Drug Discovery, 5(10), 821–834. https://doi.org/10.1038/nrd2132
  • Jamuna, S., Rathinavel, A., Mohammed Sadullah, S. S., & Devaraj, S. N. (2018). In silico approach to study the metabolism and biological activities of oligomeric proanthocyanidin complexes. Indian Journal of Pharmacology, 50(5), 242–250. https://doi.org/10.4103/ijp.IJP
  • Joshi, C., Chaudhari, A., Joshi, C., Joshi, M., & Bagatharia, S. (2021). Repurposing of the herbal formulations: Molecular docking and molecular dynamics simulation studies to validate the efficacy of phytocompounds against SARS-CoV-2 proteins. Journal of Biomolecular Structure & Dynamics, 40(18), 8405–8419. https://doi.org/10.1080/07391102.2021.1922095
  • Karaman, R., Jubeh, B., & Breijyeh, Z. (2020). Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules, 25(12), 2888. https://doi.org/10.3390/molecules25122888
  • Kenny, C. R., Furey, A., & Lucey, B. (2015). A post-antibiotic era looms: Can plant natural product research fill the void? British Journal of Biomedical Science, 72(4), 191–200. https://doi.org/10.1080/09674845.2015.11665752
  • Kim, M-K. (2019). Staphylococcus aureus toxins: From their pathogenic roles to anti-virulence therapy using natural products. Biotechnology and Bioprocess Engineering, 24(3), 424–435. https://doi.org/10.1007/s12257-019-0059-9
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971
  • Klevens, R. M., Morrison, M. A., Nadle, J., Petit, S., Gershman, K., Ray, S., Harrison, L. H., Lynfield, R., Dumyati, G., Townes, J. M., Craig, A. S., Zell, E. R., Fosheim, G. E., McDougal, L. K., Carey, R. B., & Fridkin, S. K, Active Bacterial Core surveillance (ABCs) MRSA Investigators. (2007). Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA, 298(15), 1763–1771. https://doi.org/10.1001/jama.298.15.1763
  • Korth, M. (2011). Empirical hydrogen-bond potential functions—an old hat reconditioned. Chemphyschem, 12(17), 3131–3142. https://doi.org/10.1002/cphc.201100540
  • Kumari, R., Kumar, R., & Lynn, A, Open Source Drug Discovery Consortium. (2014). G_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A Program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lee, A. S., De Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A., & Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Nature Reviews-Disease Primers, 4(5), 18033. https://doi.org/10.1038/nrdp.2018.33
  • Li, J., Feng, S., Liu, X., Jia, X., Qiao, F., & Guo, J. (2022). Effects of traditional Chinese medicine and its active ingredients on drug-resistant bacteria. Frontiers in Pharmacology, 13(6), 1–14. https://doi.org/10.3389/fphar.2022.837907
  • Li, Y., & Ge, X. (2023). Role of berberine as a potential efflux pump inhibitor against MdfA from Escherichia coli: In vitro and in silico studies. Microbiology Spectrum, 11(2), e0332422. https://doi.org/10.1128/spectrum.03324-22
  • Luo, Q., Zhang, C., Miao, L., Zhang, D., Bai, Y., Hou, C., Liu, J., Yan, F., Mu, Y., & Luo, G. (2012). Triple mutated antibody ScFv2F3 with high GPx activity: Insights from MD, docking, MDFE, and MM-PBSA simulation. Amino Acids, 44(3), 1009–1019. https://doi.org/10.1007/s00726-012-1435-3
  • Mikkaichi, T., Yeaman, M. R., & Hoffmann, A, MRSA Systems Immunobiology Group. (2019). Identifying determinants of persistent MRSA bacteremia using mathematical modeling. PLOS Computational Biology, 15(7), e1007087. https://doi.org/10.1371/journal.pcbi.1007087
  • Morimoto, Y., Aiba, Y., Miyanaga, K., Hishinuma, T., Cui, L., Baba, T., & Hiramatsu, K. (2023). CID12261165, a flavonoid compound as antibacterial agents against quinolone – resistant Staphylococcus aureus. Scientific Reports, 13(1), 1725. https://doi.org/10.1038/s41598-023-28859-8
  • Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Microbiol Spectr., 4(2), 1–37. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
  • Nawrocki, K. L., Crispell, E. K., & Mcbride, S. M. (2014). Antimicrobial peptide resistance mechanisms of gram-positive bacteria. Antibiotics, 3(4), 461–492. https://doi.org/10.3390/antibiotics3040461
  • Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451–1474. https://doi.org/10.3390/ph6121451
  • Overington, J. P., Al-Lazikani, B., & Hopkins, A. L. (2006). How many drug targets are there? Nature Reviews-Drug Discovery, 5(12), 993–996. https://doi.org/10.1038/nrd2199
  • Parida, P. K., Paul, D., & Chakravorty, D. (2020). The natural way forward: Molecular dynamics simulation analysis of phytochemicals from Indian medicinal plants as potential inhibitors of SARS-CoV-2 targets. Phytotherapy Research, 34(12), 3420–3433. https://doi.org/10.1002/ptr.6868
  • Peacock, S. J., & Paterson, G. K. (2015). Mechanisms of methicillin resistance in Staphylococcus aureus. Annual Review of Biochemistry, 84(1), 577–601. https://doi.org/10.1146/annurev-biochem-060614-034516
  • Prasathkumar, M., Anisha, S., Dhrisya, C., Becky, R., & Sadhasivam, S. (2021). Therapeutic and pharmacological efficacy of selective Indian medicinal plants – a review. Phytomedicine plus, 1(2), 100029. https://doi.org/10.1016/j.phyplu.2021.100029
  • Prieto-Martínez, F. D., López-López, E., Juárez-Mercado, K. E., & Medina-Franco, J. L. (2019). Chapter 2 – computational drug design methods—current and future perspectives. In K. B. T. Roy. In silico drug design (pp. 19–44). Academic Press.
  • Raimondi, M. V., Randazzo, O., La Franca, M., Barone, G., Vignoni, E., Rossi, D., & Collina, S. (2019). DHFR inhibitors: Reading the past for discovering novel anticancer agents. Molecules 24(6), 1140. https://doi.org/10.3390/molecules24061140
  • Rasigade, J., Dumitrescu, O., & Lina, G. (2014). New epidemiology of Staphylococcus aureus infections. Clinical Microbiology and Infection, 20(7), 587–588. https://doi.org/10.1111/1469-0691.12718
  • Rauf, A., Zubair, S., & Azhar, A. (2015). Ligand docking and binding site analysis with pymol and autodock/Vina. International Journal of Basic and Applied Sciences, 4(2), 168–177. https://doi.org/10.14419/ijbas.v4i2.4
  • Satari, A., Ghasemi, S., Habtemariam, S., Asgharian, S., & Lorigooini, Z. (2021). Rutin: A flavonoid as an effective sensitizer for anticancer therapy ; insights into multifaceted mechanisms and applicability for combination therapy. Evidence-Based Complementary and Alternative Medicine, 2021(9913179), 9913179–9913110. https://doi.org/10.1155/2021/9913179
  • Sekar, A., Soundhararajan, R., & Srinivasan, H. (2021). In silico analysis of quercetin and its analogues against targeted proteins. Biointerface Research in Applied Chemistry, 11(5), 13695–13705. https://doi.org/10.33263/BRIAC115.1369513705
  • Sharma, J., Kumar Bhardwaj, V., Singh, R., Rajendran, V., Purohit, R., & Kumar, S. (2020). An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 of SARS-CoV-2. Food Chemistry, 346, 128933. https://doi.org/10.1016/j.foodchem.2020.128933
  • Sharma, P., Joshi, T., Mathpal, S., Chandra, S., & Tamta, S. (2022). In silico identification of antidiabetic target for phytochemicals of A. Marmelos and mechanistic insights by molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 40(21), 10543–10560. https://doi.org/10.1080/07391102.2021.1944910
  • Shen, S., Zhang, T., Yuan, Y., Lin, S., Xu, J., & Ye, H. (2015). Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control, 47(1), 196–202. https://doi.org/10.1016/j.foodcont.2014.07.003
  • Shiv, B., Lee, K. E., Dwivedi, V. D., Yadava, U., Panwar, A., Lucas, S. J., Pandey, A., & Kang, S. G. (2019). Discovery of Ganoderma lucidum triterpenoids as potential inhibitors against dengue virus NS2B-NS3 protease. Scientific Reports, 9(1), 19059. https://doi.org/10.1038/s41598-019-55723-5
  • Singh, G., Soni, H., Tandon, S., Kumar, V., Babu, G., Gupta, V., & Chaudhuri (Chattopadhyay), P. (2022). Identification of natural DHFR inhibitors in MRSA strains: Structure-based drug design study. Results in Chemistry, 4(100292), 100292. https://doi.org/10.1016/j.rechem.2022.100292
  • Sohraby, F., & Aryapour, H. (2021). Unraveling the unbinding pathways of SARS-CoV-2 papain-like proteinase known inhibitors by supervised molecular dynamics simulation. PLOS One, 16(5), e0251910. https://doi.org/10.1371/journal.pone.0251910
  • Srikumar, P. S., Rohini, K., & Rajesh, P. K. (2014). Molecular dynamics simulations and principal component analysis on human laforin mutation W32G and W32G/K87A. The Protein Journal, 33(3), 289–295. https://doi.org/10.1007/s10930-014-9561-2
  • Subramani, R., Narayanasamy, M., & Feussner, K.-D. (2017). Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech, 7(3), 172. https://doi.org/10.1007/s13205-017-0848-9
  • Takeuchi, M., Teshima, M., Okubo, S., & Aoki, S. (2023). In silico and in vitro identification of compounds with dual pharmacological activity against metionyl-TRNA synthetase and isoleucyl-TRNA synthetase of Staphylococcus aureus. ChemistrySelect, 8(13), 1–9. https://doi.org/10.1002/slct.202300460
  • Tian, S.,Wang, J.,Li, Y.,Li, DAN.,Xu, LEI., &Hou, T. (2015). The application of in silico drug-likeness predictions in pharmaceutical research. Advanced Drug Delivery Reviews, 86, 2–10. 10.1016/j.addr.2015.01.009 25666163
  • Tran, L. T. T., Pham, L.-H D., Dang, N. Y. T., Nguyen Le, N. T., Nguyen, H. B., & Nguyen, T. K. (2022). Phytochemicals derived from Goniothalamus elegans AST exhibit anticancer activity by inhibiting epidermal growth factor receptor. Natural Product Communications, 17(11), 1934578X2211384. https://doi.org/10.1177/1934578X221138435
  • Tripathi, M. K., Ahmad, S., Tyagi, R., Dahiya, V., & Kumar Yadav, M. (2022). Chapter 5 – fundamentals of molecular modeling in drug design. In M. Rudrapal & C. Egbuna (Eds.). Computer aided drug design (CADD): From ligand-based methods to structure-based approaches, drug discovery update (pp. 125–155) Elsevier.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Van Norman, G. A. (2016). Drugs, Devices, and the FDA: Part 2: An Overview of Approval Processes: FDA Approval of Medical Devices. JACC. Basic to Translational Science, 1(4), 277–287. 10.1016/j.jacbts.2016.03.009 30167516
  • Verma, A. K., Ahmed, S. F., Hossain, M. S., Bhojiya, A. A., Mathur, A., Upadhyay, S. K., Srivastava, A. K., Vishvakarma, N. K., Barik, M., Rahaman, M. M., & Bahadur, N. M. (2022). Molecular docking and simulation studies of flavonoid compounds against PBP-2a of methicillin‐resistant Staphylococcus aureus. Journal of Biomolecular Structure & Dynamics, 40(21), 10561–10577. https://doi.org/10.1080/07391102.2021.1944911
  • WHO. (2017). Global antimicrobial resistance surveillance system (GLASS) report. Switzerland: World Health Organization
  • Wing, R., Sit, S., Wing, R., Wu, K., Reeves, K. D., Rabago, D., Cheong, D., Chan, C., Hon, B., Yip, K., Chi, V., Chung, H., Yeung, S., & Wong, S. (2018). Efficacy of intra-articular hypertonic dextrose prolotherapy versus normal saline for knee osteoarthritis: A protocol for a triple-blinded randomized controlled trial. BMC Complementary and Alternative Medicine, 18(1), 157. STUDY. https://doi.org/10.1186/s12906-018-2226-5
  • Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., Woolsey, J., & Tg, C. (2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34(Database issue), D668–72. https://doi.org/10.1093/nar/gkj067
  • Xia, J., Gao, J., & Tang, W. (2016). Nosocomial infection and its molecular mechanisms of antibiotic resistance. Bioscience Trends, 10(1), 14–21. https://doi.org/10.5582/bst.2016.01020
  • Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). Data and text mining AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6), 1067–1069. https://doi.org/10.1093/bioinformatics/bty707
  • Yin, P., Yong, L., & Navaratnam, P. (2014). Fitoterapia potential targets by pentacyclic triterpenoids from Callicarpa farinosa against methicillin-resistant and sensitive Staphylococcus aureus. Fitoterapia, 94, 48–54. https://doi.org/10.1016/j.fitote.2014.01.026
  • Zhang, Y., Cai, P., Cheng, G., & Zhang, Y. (2022). A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Natural Product Communications, 17(1), 1934578X2110697. https://doi.org/10.1177/1934578X211069721
  • Zhao, Y., Wei, J., Li, C., Ahmed, A. F., Liu, Z., & Ma, C. (2022). A comprehensive review on mechanism of natural products against Staphylococcus aureus. Journal of Future Foods, 2(1), 25–33. https://doi.org/10.1016/j.jfutfo.2022.03.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.