114
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigating the bispecific lead compounds against methicillin-resistant Staphylococcus aureus SarA and CrtM using machine learning and molecular dynamics approach

, ORCID Icon, , , &
Received 08 Sep 2023, Accepted 14 Dec 2023, Published online: 26 Dec 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Alsaady, I. M., Bajrai, L. H., Alandijany, T. A., Gattan, H. S., El-Daly, M. M., Altwaim, S. A., Alqawas, R. T., Dwivedi, V. D., & Azhar, E. I. (2023). Cheminformatics strategies unlock Marburg virus VP35 inhibitors from natural compound library. Viruses, 15(8), 1739. https://doi.org/10.3390/v15081739
  • Antonic, V., Stojadinovic, A., Zhang, B., Izadjoo, M. J., & Alavi, M. (2013). Pseudomonas aeruginosa induces pigment production and enhances virulence in a white phenotypic variant of Staphylococcus aureus. Infection and Drug Resistance, 6, 175–186. https://doi.org/10.2147/IDR.S49039
  • Archer, N. K., Mazaitis, M. J., Costerton, J. W., Leid, J. G., Powers, M. E., & Shirtliff, M. E. (2011). Staphylococcus aureus biofilms. Virulence, 2(5), 445–459. https://doi.org/10.4161/viru.2.5.17724
  • Awal, M. A., Nur, S. M., Al Khalaf, A. K., Rehan, M., Ahmad, A., Hosawi, S. B. I., Choudhry, H., & Khan, M. I. (2022). Structural-guided identification of small molecule inhibitor of UHRF1 methyltransferase activity. Frontiers in Genetics, 13, 928884. https://doi.org/10.3389/fgene.2022.928884
  • Baidya, A. T., Kumar, A., Kumar, R., & Darreh-Shori, T. (2022). Allosteric binding sites of Aβ peptides on the acetylcholine synthesizing enzyme ChAT as deduced by in silico molecular modeling. International Journal of Molecular Sciences, 23(11), 6073. https://doi.org/10.3390/ijms23116073
  • Balamurugan, P., Hema, M., Kaur, G., Sridharan, V., Prabu, P. C., Sumana, M. N., & Princy, S. A. (2015). Development of a biofilm inhibitor molecule against multidrug resistant Staphylococcus aureus associated with gestational urinary tract infections. Frontiers in Microbiology, 6, 832. https://doi.org/10.3389/fmicb.2015.00832
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Beenken, K. E., Blevins, J. S., & Smeltzer, M. S. (2003). Mutation of SarA in Staphylococcus aureus limits biofilm formation. Infection and Immunity, 71(7), 4206–4211. https://doi.org/10.1128/IAI.71.7.4206-4211.2003
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications. 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, IN., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bommu, U. D., Konidala, K. K., Pabbaraju, N., & Yeguvapalli, S. (2019). QSAR modeling, pharmacophore-based virtual screening, and ensemble docking insights into predicting potential epigallocatechin gallate (EGCG) analogs against epidermal growth factor receptor. Journal of Receptor and Signal Transduction Research, 39(1), 18–27. https://doi.org/10.1080/10799893.2018.1564151
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Cotuá, J., LLinás, H., & Cotes, S. (2021). Virtual Screening Based on QSAR and molecular docking of possible inhibitors targeting chagas CYP51. Journal of Chemistry. 2021, e6640624–15. https://doi.org/10.1155/2021/6640624
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dalal, V., & Kumari, R. (2022). Screening and identification of natural product-like compounds as potential antibacterial agents targeting FemC of Staphylococcus aureus: An in-silico approach. ChemistrySelect, 7(42), e202201728. https://doi.org/10.1002/slct.202201728
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Davies, M., Nowotka, M., Papadatos, G., Dedman, N., Gaulton, A., Atkinson, F., Bellis, L., & Overington, J. P. (2015). ChEMBL web services: Streamlining access to drug discovery data and utilities. Nucleic Acids Research, 43(W1), W612–W620. https://doi.org/10.1093/nar/gkv352
  • Dorcheh, F. A., Balmeh, N., & Sanjari, S. (2022). In-silico investigation of antibacterial herbal compounds in order to find new antibiotic against Staphylococcus aureus and its resistant subtypes. Informatics in Medicine Unlocked, 28, 100843. https://doi.org/10.1016/j.imu.2021.100843
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • El-Ganiny, A. M., Gad, A. I., El-Sayed, M. A., Shaldam, M. A., & Abbas, H. A. (2022). The promising anti-virulence activity of candesartan, domperidone, and miconazole on Staphylococcus aureus. Brazilian Journal of Microbiology, 53(1), 1–18. https://doi.org/10.1007/s42770-021-00655-4
  • Elward, A. M., McAndrews, J. M., & Young, V. L. (2009). Methicillin-sensitive and methicillin-resistant Staphylococcus aureus: Preventing surgical site infections following plastic surgery. Aesthetic Surgery Journal, 29(3), 232–244. https://doi.org/10.1016/j.asj.2009.01.010
  • Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/jm000942e
  • Fan, F., Toledo Warshaviak, D., Hamadeh, H. K., & Dunn, R. T. (2019). The integration of pharmacophore-based 3D QSAR modeling and virtual screening in safety profiling: A case study to identify antagonistic activities against adenosine receptor, A2A, using 1,897 known drugs. PLOS One, 14(1), e0204378. https://doi.org/10.1371/journal.pone.0204378
  • Fang, B., Liu, B., & Sun, B. (2020). Transcriptional regulation of virulence factors Hla and phenol-soluble modulins α by AraC-type regulator Rbf in Staphylococcus aureus. International Journal of Medical Microbiology, 310(5), 151436. https://doi.org/10.1016/j.ijmm.2020.151436
  • Ferreira, L., Dos Santos, R., Oliva, G., & Andricopulo, A. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384
  • Garro Martinez, J. C., Vega-Hissi, E. G., Andrada, M. F., & Estrada, M. R. (2015). QSAR and 3D-QSAR studies applied to compounds with anticonvulsant activity. Expert Opinion on Drug Discovery, 10(1), 37–51. https://doi.org/10.1517/17460441.2015.968123
  • General information | MRSA | CDC. https://www.cdc.gov/mrsa/community/index.html (accessed 9 August-2023).
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
  • Gu, K., Ouyang, P., Hong, Y., Dai, Y., Tang, T., He, C., Shu, G., Liang, X., Tang, H., Zhu, L., Xu, Z., & Yin, L. (2022). Geraniol inhibits biofilm formation of methicillin-resistant Staphylococcus aureus and increase the therapeutic effect of vancomycin in vivo. Frontiers in Microbiology, 13, 960728. https://doi.org/10.3389/fmicb.2022.960728
  • Guerra, C. J., López, J. M., Figueredo, S. F., Muñoz, A. E., & Robles, J. R. (2016). 2D-QSAR analysis of derivatives of quinoxaline 1,4-di- N -oxides with activity against Chagas’ disease. Química Nova, 39(6), 647-654. https://doi.org/10.5935/0100-4042.20160078
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Hong, H., Chen, M., Ng, H. W., & Tong, W. (2016). QSAR models at the US FDA/NCTR. In E. Benfenati (Ed.), In silico methods for predicting drug toxicity, methods in molecular biology (vol. 1425, pp. 431–459). Springer New York.
  • Izadi, S., Anandakrishnan, R., & Onufriev, A. V. (2014). Building water models: A different approach. The Journal of Physical Chemistry Letters, 5(21), 3863–3871. https://doi.org/10.1021/jz501780a
  • Jawarkar, R. D., Bakal, R. L., Zaki, M. E. A., Al-Hussain, S., Ghosh, A., Gandhi, A., Mukerjee, N., Samad, A., Masand, V. H., & Lewaa, I. (2022). QSAR based virtual screening derived identification of a novel hit as a SARS CoV-229E 3CLpro inhibitor: GA-MLR QSAR modeling supported by molecular docking, molecular dynamics simulation and MMGBSA calculation approaches. Arabian Journal of Chemistry, 15(1), 103499. https://doi.org/10.1016/j.arabjc.2021.103499
  • Jenul, C., & Horswill, A. R. (2019). Regulation of Staphylococcus aureus virulence. Microbiology Spectrum, 7(2), 1-21. https://doi.org/10.1128/microbiolspec.gpp3-0031-2018
  • Kannan, S., & Kolandaivel, P. (2018). The inhibitory performance of flavonoid cyanidin-3-sambubiocide against H274Y mutation in H1N1 influenza virus. Journal of Biomolecular Structure & Dynamics, 36(16), 4255–4269. https://doi.org/10.1080/07391102.2017.1413422
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956
  • Lakhundi, S., & Zhang, K. (2018). Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clinical Microbiology Reviews, 31(4), e00020-18. https://doi.org/10.1128/CMR.00020-18
  • Lakshmi, S. A., Bhaskar, J. P., Krishnan, V., Sethupathy, S., Pandipriya, S., Aruni, W., & Pandian, S. K. (2020). Inhibition of biofilm and biofilm-associated virulence factor production in methicillin-resistant Staphylococcus aureus by docosanol. Journal of Biotechnology, 317, 59–69. https://doi.org/10.1016/j.jbiotec.2020.04.014
  • Landrum, G. (2014). Rdkit: Open-source cheminformatics. Release 2014.03.1. Zenodo. https://doi.org/10.5281/zenodo.10398
  • Lindahl, A., & Hess, V. D. S. (2021). GROMACS 2021.2 manual. https://doi.org/10.5281/ZENODO.4723561
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Liu, C.-I., Liu, G. Y., Song, Y., Yin, F., Hensler, M. E., Jeng, W.-Y., Nizet, V., Wang, A. H.-J., & Oldfield, E. (2008). A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science, 319(5868), 1391–1394. https://doi.org/10.1126/science.1153018
  • Liu, Y., Manna, A. C., Pan, C.-H., Kriksunov, I. A., Thiel, D. J., Cheung, A. L., & Zhang, G. (2006). Structural and function analyses of the global regulatory protein SarA from Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2392–2397. https://doi.org/10.1073/pnas.0510439103
  • Mah, T. F., & O'Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9(1), 34–39. https://doi.org/10.1016/S0966-842X(00)01913-2
  • Maisuradze, G. G., Liwo, A., & Scheraga, H. A. (2010). Relation between free energy landscapes of proteins and dynamics. Journal of Chemical Theory and Computation, 6(2), 583–595. https://doi.org/10.1021/ct9005745
  • Mannhold, R., Poda, G. I., Ostermann, C., & Tetko, I. V. (2009). Calculation of molecular lipophilicity: State-of-the-art and comparison of LogP methods on more than 96,000 compounds. Journal of Pharmaceutical Sciences, 98(3), 861–893. https://doi.org/10.1002/jps.21494
  • Miller, B. R. I., McGee, T. D., Jr.Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.Py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Persson, L., Karlsson-Vinkhuyzen, S., Lai, A., Persson, Å., & Fick, S. (2017). The Globally Harmonized System of Classification and Labelling of Chemicals—Explaining the Legal Implementation Gap. Sustainability, 9(12), 2176. https://doi.org/10.3390/su9122176
  • Rudrapal, M., & Chetia, D. (2020). Virtual screening, molecular docking and QSAR studies in drug discovery and development programme. Journal of Drug Delivery and Therapeutics, 10(4), 225–233. https://doi.org/10.22270/jddt.v10i4.4218
  • Sahoo, A., Swain, S. S., Panda, S. K., Hussain, T., Panda, M., & Rodrigues, C. F. (2022). In silico identification of potential insect peptides against biofilm-producing Staphylococcus aureus. Chemistry & Biodiversity, 19(10), e202200494. https://doi.org/10.1002/cbdv.202200494
  • Selvaraj, A., Valliammai, A., Muthuramalingam, P., Priya, A., Suba, M., Ramesh, M., & Karutha Pandian, S. (2020). Carvacrol targets SarA and CrtM of methicillin-resistant Staphylococcus aureus to mitigate biofilm formation and staphyloxanthin synthesis: An in vitro and in vivo approach. ACS Omega, 5(48), 31100–31114. https://doi.org/10.1021/acsomega.0c04252
  • Shahkarami, F., Rashki, A., & Rashki Ghalehnoo, Z. (2014). Microbial susceptibility and plasmid profiles of methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. Aureus. Jundishapur Journal of Microbiology, 7(7), e16984. https://doi.org/10.5812/jjm.16984
  • Shukla, D., Alanazi, A. M., Panda, S. P., Dwivedi, V. D., & Kamal, M. A. (2023). Unveiling the antiviral potential of plant compounds from the Meliaceae family against the Zika virus through QSAR modeling and MD simulation analysis. Journal of Biomolecular Structure & Dynamics, 1–16. https://doi.org/10.1080/07391102.2023.2259498
  • Siddiqui, A. H., & Koirala, J. (2023). Methicillin-resistant Staphylococcus aureus. In Koirala, J. (Ed.), StatPearls. StatPearls Publishing.
  • Teague, S. J., Davis, A. M., Leeson, P. D., & Oprea, T. (1999). The design of leadlike combinatorial libraries. Angewandte Chemie International Edition, 38(24), 3743–3748. https://doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3743::AID-ANIE3743>3.0.CO;2-U
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). Gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field (CGenFF): A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Vijayakumar, K., Muhilvannan, S., & Arun Vignesh, M. (2022). Hesperidin inhibits biofilm formation, virulence and staphyloxanthin synthesis in methicillin resistant Staphylococcus aureus by targeting SarA and CrtM: An in vitro and in silico approach. World Journal of Microbiology & Biotechnology, 38(3), 44. https://doi.org/10.1007/s11274-022-03232-5
  • Vijayalakshmi, P., Nisha, J., & Rajalakshmi, M. (2014). Virtual screening of potential inhibitor against FtsZ protein from Staphylococcus aureus. Interdisciplinary Sciences, Computational Life Sciences, 6(4), 331–339. https://doi.org/10.1007/s12539-012-0229-3
  • Wasilewicz, A., Kirchweger, B., Bojkova, D., Abi Saad, M. J., Langeder, J., Bütikofer, M., Adelsberger, S., Grienke, U., Cinatl, J., Petermann, O., Scapozza, L., Orts, J., Kirchmair, J., Rabenau, H. F., & Rollinger, J. M. (2023). Identification of natural products inhibiting SARS-CoV-2 by targeting viral proteases: A combined in silico and in vitro approach. Journal of Natural Products, 86(2), 264–275. https://doi.org/10.1021/acs.jnatprod.2c00843
  • WHO (2017). WHO publishes list of bacteria for which new antibiotics are urgently needed. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed 9 August 2023).
  • WHO (2023). Proportion of bloodstream infection due to methicillin-resistant Staphylococcus aureus (MRSA) (%). https://www.who.int/data/gho/data/indicators/indicator-details/GHO/sdg-3.d.2-amr-infect-mrsa (accessed 9 August).
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.