322
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biological evaluations and computational studies of newly synthesized thymol-based Schiff bases as anticancer, antimicrobial and antioxidant agents

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 22 Aug 2023, Accepted 17 Dec 2023, Published online: 26 Dec 2023

References

  • Akkoç, S., Tüzün, B., Özalp, A., & Kökbudak, Z. (2021). Investigation of structural, electronical and in vitro cytotoxic activity properties of some heterocyclic compounds. Journal of Molecular Structure, 1246, 131127. https://doi.org/10.1016/j.molstruc.2021.131127
  • Archana, P. R., Nageshwar Rao, B., & Satish Rao, B. S. (2011). Modulation of gamma ray-induced genotoxic effect by thymol, a monoterpene phenol derivative of cymene. Integrative Cancer Therapies, 10(4), 374–383. https://doi.org/10.1177/1534735410387421
  • Aydın, E., Turkez, H., Tasdemir, S., & Hacımuftuoglu, F. (2017). Anticancer, antioxidant and cytotoxic potential of thymol in vitro brain tumor cell model. Central Nervous System Agents in Medicinal Chemistry, 17(2), 116–122. https://doi.org/10.2174/1871524916666160823121854
  • Aziz, M. A., Serya, R. A. T., Lasheen, D. S., Abdel-Aziz, A. K., Esmat, A., Mansour, A. M., Singab, A. N. B., & Abouzid, K. A. M. (2016). Discovery of potent VEGFR-2 inhibitors based on furopyrimidine and thienopyrimidne scaffolds as cancer targeting agents. Scientific Reports, 6(1), 24460. https://doi.org/10.1038/srep24460
  • Azzimonti, B., Ballacchino, C., Zanetta, P., Cucci, M. A., Monge, C., Grattarola, M., Dianzani, C., Barrera, G., & Pizzimenti, S. (2023). Microbiota, oxidative stress, and skin cancer: An unexpected triangle. Antioxidants, 12(3), 546. https://doi.org/10.3390/antiox12030546
  • Bahrin, L. G., Sarbu, L. G., Hopf, H., Jones, P. G., Babii, C., Stefan, M., & Birsa, M. L. (2016). The influence of halogen substituents on the biological properties of sulfur-containing flavonoids. Bioorganic & Medicinal Chemistry, 24(14), 3166–3173. https://doi.org/10.1016/j.bmc.2016.05.044
  • Bardelčíková, A., Šoltys, J., & Mojžiš, J. (2023). Oxidative stress, inflammation and colorectal cancer: An overview. Antioxidants, 12(4), 901. https://doi.org/10.3390/antiox12040901
  • Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4_ts), 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493
  • Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, General Physics, 38(6), 3098–3100. https://doi.org/10.1103/physreva.38.3098
  • Ben Arfa, A., Combes, S., Preziosi-Belloy, L., Gontard, N., & Chalier, P. (2006). Antimicrobial activity of carvacrol related to its chemical structure. Letters in Applied Microbiology, 43(2), 149–154. https://doi.org/10.1111/j.1472-765X.2006.01938.x
  • Boye, A., Addo, J. K., Acheampong, D. O., Thomford, A. K., Asante, E., Amoaning, R. E., & Kuma, D. N. (2020). The hydroxyl moiety on carbon one (C1) in the monoterpene nucleus of thymol is indispensable for anti-bacterial effect of thymol. Heliyon, 6(3), e03492. https://doi.org/10.1016/j.heliyon.2020.e03492
  • Bozbey, I., Uslu, H., Türkmenoğlu, B., Özdemir, Z., Karakurt, A., & Levent, S. (2022). Conventional and microwave prompted synthesis of aryl (alkyl) azole oximes, 1H-NMR spectroscopic determination of E/Z isomer ratio and HOMO-LUMO analysis. Journal of Molecular Structure, 1251, 132077. https://doi.org/10.1016/j.molstruc.2021.132077
  • Brinzei, M., Stefaniu, A., lulian, O., Ciocirlan, O.(2021). Density functional theory (DFT) and thermodynamics calculations of amino acids with polar uncharged side chains. Chemistry Proceedings, 3(1), 56. https://doi.org/10.3390/ecsoc-24-08420
  • Chandra, A. K., & Uchimaru, T. (2002). The O-H bond dissociation energies of substituted phenols and proton affinities of substituted phenoxide ions: A DFT study. International Journal of Molecular Sciences, 3(4), 407–422. https://doi.org/10.3390/i3040407
  • de Courcy, B., Piquemal, J. P., Garbay, C., & Gresh, N. (2010). Polarizable water molecules in ligand − macromolecule recognition. Impact on the relative affinities of competing pyrrolopyrimidine inhibitors for FAK kinase. Journal of the American Chemical Society, 132(10), 3312–3320. https://doi.org/10.1021/ja9059156
  • Deb, D. D., Parimala, G., Saravana Devi, S., & Chakraborty, T. (2011). Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60. Chemico-Biological Interactions, 193(1), 97–106. https://doi.org/10.1016/j.cbi.2011.05.009
  • Fachini-Queiroz, F. C. (2012). Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evidence-Based Complementary and Alternative Medicine, 2012, 657056. https://doi.org/10.1155/2012/657026
  • Gavaric, N., Mozina, S. S., Kladar, N., & Bozin, B. (2015). Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. Journal of Essential Oil Bearing Plants, 18(4), 1013–1021. https://doi.org/10.1080/0972060X.2014.971069
  • Gholijani, N., Gharagozloo, M., Kalantar, F., Ramezani, A., & Amirghofran, Z. (2015). Modulation of cytokine production and transcription factors activities in human Jurkat T cells by thymol and carvacrol. Advanced Pharmaceutical Bulletin, 5(1), 653–660. https://doi.org/10.15171/apb.2015.089
  • Inci Gul, H., Yamali, C., Tugce Yasa, A., Unluer, E., Sakagami, H., Tanc, M., & Supuran, C. T. (2016). Carbonic anhydrase inhibition and cytotoxicity studies of Mannich base derivatives of thymol. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6), 1375–1380. https://doi.org/10.3109/14756366.2016.1140755
  • Islam, M. T., Khalipha, A. B. R., Bagchi, R., Mondal, M., Smrity, S. Z., Uddin, S. J., Shilpi, J. A., & Rouf, R. (2019). Anticancer activity of thymol: A literature-based review and docking study with Emphasis on its anticancer mechanisms. IUBMB Life, 71(1), 9–19. https://doi.org/10.1002/iub.1935
  • Jabbarzadeh Kaboli, P., Ismail, P., & Ling, K. H. (2018). Molecular modeling, dynamics simulations, and binding efficiency of berberine derivatives: A new group of RAF inhibitors for cancer treatment. PLoS One, 13(3), e0193941. https://doi.org/10.1371/journal.pone.0193941
  • Jovanovic, M., Kovačević, S., Brkljačić, J., & Djordjevic, A. (2023). Oxidative stress linking obesity and cancer: Is obesity a ‘radical trigger’ to cancer? International Journal of Molecular Sciences, 24(9), 8452. https://doi.org/10.3390/ijms24098452
  • Jung, K. W., Chung, M. S., Bai, H. W., Chung, B. Y., & Lee, S. (2021). Investigation of antifungal mechanisms of thymol in the human fungal pathogen, Cryptococcus neoformans. Molecules (Basel, Switzerland), 26(11), 3476. https://doi.org/10.3390/molecules26113476
  • Kachur, K., & Suntres, Z. (2020). The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition, 60(18), 3042–3053. https://doi.org/10.1080/10408398.2019.1675585
  • Kalinina, E. V., Gavriliuk, L. A., & Pokrovsky, V. S. (2022). Oxidative stress and redox-dependent signaling in prostate cancer. Biochemistry. Biokhimiia, 87(5), 413–424. https://doi.org/10.1134/S0006297922050030
  • Karatas, H., Aydin, M., Turkmenoglu, B., Akkoc, S., Sahin, O., & Kokbudak, Z. (2023). Design, synthesis, cytotoxic activity, and in silico studies of new Schiff bases including pyrimidine core. ChemistrySelect, 8(6), e202204221. https://doi.org/10.1002/slct.202204221
  • Kaur, R., Darokar, M. P., Chattopadhyay, S. K., Krishna, V., & Ahmad, A. (2014). Synthesis of halogenated derivatives of thymol and their antimicrobial activities. Medicinal Chemistry Research, 23(5), 2212–2217. https://doi.org/10.1007/s00044-013-0809-8
  • Kavoosi, G., Dadfar, S. M. M., & Purfard, A. M. (2013). Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. Journal of Food Science, 78(2), E244–E250. https://doi.org/10.1111/1750-3841.12015
  • Kumar, D., Rawat, D. S., & Beena  . (2013). Synthesis and antioxidant activity of thymol and carvacrol based Schiff bases. Bioorganic & Medicinal Chemistry Letters, 23(3), 641–645. https://doi.org/10.1016/j.bmcl.2012.12.001
  • Lai, W. L., Chuang, H. S., Lee, M. H., Wei, C. L., Lin, C. F., & Tsai, Y. C. (2012). Inhibition of herpes simplex virus type 1 by thymol-related monoterpenoids. Planta Medica, 78(15), 1636–1638. https://doi.org/10.1055/s-0032-1315208
  • Lee, C. Y., Anamoah, C., Semenya, J., Chapman, K. N., Knoll, A. N., Brinkman, H. F., Malone, J. I., & Sharma, A. (2020). Electronic (donating or withdrawing) effects of ortho-phenolic substituents in dendritic antioxidants. Tetrahedron Letters, 61(11), 151607. https://doi.org/10.1016/j.tetlet.2020.151607
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review. B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/physrevb.37.785
  • Lin, X., & Kück, U. (2022). Cephalosporins as key lead generation beta-lactam antibiotics. Applied Microbiology and Biotechnology, 106(24), 8007–8020. https://doi.org/10.1007/s00253-022-12272-8
  • Llana-Ruiz-Cabello, M., Gutiérrez-Praena, D., Puerto, M., Pichardo, S., Jos, Á., & Cameán, A. M. (2015). In vitro pro-oxidant/antioxidant role of carvacrol, thymol and their mixture in the intestinal Caco-2 cell line. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 29(4), 647–656. https://doi.org/10.1016/j.tiv.2015.02.006
  • Lobanovska, M., & Pilla, G. (2017). Penicillin’s discovery and antibiotic resistance: Lessons for the future? Yale Journal of Biology and Medicine, 90(1), 135–145. PMID: 28356901; PMCID: PMC5369031.
  • Mankoo, P. K., Sukumar, S., & Karchin, R. (2009). PIK3CA somatic mutations in breast cancer: Mechanistic insights from Langevin dynamics simulations. Proteins, 75(2), 499–508. https://doi.org/10.1002/prot.22265
  • Marchese, A., Orhan, I. E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S. F., Gortzi, O., Izadi, M., & Nabavi, S. M. (2016). Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chemistry, 210, 402–414. https://doi.org/10.1016/j.foodchem.2016.04.111
  • Mastelić, J., Jerković, I., Blazević, I., Poljak-Blazi, M., Borović, S., Ivancić-Baće, I., Smrecki, V., Zarković, N., Brcić-Kostic, K., Vikić-Topić, D., & Müller, N. (2008). Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. Journal of Agricultural and Food Chemistry, 56(11), 3989–3996. https://doi.org/10.1021/jf073272v
  • McTigue, M., Murray, B. W., Chen, J. H., Deng, Y. L., Solowiej, J., & Kania, R. S. (2012). Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 109(45), 18281–18289. https://doi.org/10.1073/pnas.1207759109
  • Merde, İ B., Önel, G. T., Akkoç, S., Karaköy, Z., & Türkmenoğlu, B. (2023). Focusing on new piperazinyl‐methyl‐3 (2H) pyridazinone based derivatives: Design, synthesis, anticancer activity and computational studies. ChemistrySelect, 8(25), e202300910. https://doi.org/10.1002/slct.202300910
  • Merde, İ B., Önel, G. T., Türkmenoğlu, B., Gürsoy, Ş., & Dilek, E. (2022). Pyridazinones containing the (4-methoxyphenyl) piperazine moiety as AChE/BChE inhibitors: Design, synthesis, in silico and biological evaluation. Medicinal Chemistry Research, 31(11), 2021–2031. https://doi.org/10.1007/s00044-022-02968-x
  • Newhouse, B. J., Hansen, J. D., Grina, J., Welch, M., Topalov, G., Littman, N., Callejo, M., Martinson, M., Galbraith, S., Laird, E. R., Brandhuber, B. J., Vigers, G., Morales, T., Woessner, R., Randolph, N., Lyssikatos, J., & Olivero, A. (2011). Non-oxime pyrazole based inhibitors of B-Raf kinase. Bioorganic & Medicinal Chemistry Letters, 21(11), 3488–3492. https://doi.org/10.1016/j.bmcl.2010.12.038
  • Nowakowski, J., Cronin, C. N., McRee, D. E., Knuth, M. W., Nelson, C. G., Pavletich, N. P., Rogers, J., Sang, B.-C., Scheibe, D. N., Swanson, R. V., & Thompson, D. A. (2002). Structures of the cancer-related Aurora-A, FAK, and EphA2 protein kinases from nanovolume crystallography. Structure (London, England: 1993), 10(12), 1659–1667. https://doi.org/10.1016/s0969-2126(02)00907-3
  • O Aboelez, M., Belal, A., Xiang, G., & Ma, X. (2022). Design, synthesis, and molecular docking studies of novel pomalidomide-based PROTACs as potential anti-cancer agents targeting EGFRWT and EGFRT790M. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 1196–1211. https://doi.org/10.1080/14756366.2022.2062338
  • Ozkan, A., & Erdogan, A. (2012). A comparative study of the antioxidant/prooxidant effects of carvacrol and thymol at various concentrations on membrane and DNA of parental and drug resistant H1299 cells. Natural Products Communications. 7(12), 1557–1560. PMID: 23413548.
  • Paiano, R. B., de Sousa, R. L. M., Bonilla, J., Moreno, L. Z., de Souza, E. D. F., Baruselli, P. S., & Moreno, A. M. (2023). In vitro effects of cinnamon, oregano, and thyme essential oils against Escherichia coli and Trueperella pyogenes isolated from dairy cows with clinical endometritis. Theriogenology, 196, 106–111. https://doi.org/10.1016/j.theriogenology.2022.11.010
  • Park, J. H., Liu, Y., Lemmon, M. A., & Radhakrishnan, R. (2012). Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. The Biochemical Journal, 448(3), 417–423. https://doi.org/10.1042/BJ20121513
  • Parr, R. G., Szentpály, L., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922–1924. https://doi.org/10.1021/ja983494x
  • Sampaio, L. A., Pina, L. T. S., Serafini, M. R., Tavares, D. D. S., & Guimarães, A. G. (2021). Antitumor effects of carvacrol and thymol: A systematic review. Frontiers in Pharmacology, 12, 702487. https://doi.org/10.3389/fphar.2021.702487
  • Saravanan, S., & Balachandran, V. (2014). Quantum chemical studies, natural bond orbital analysis and thermodynamic function of 2, 5-dichlorophenylisocyanate. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 120, 351–364. https://doi.org/10.1016/j.saa.2013.10.042
  • Satooka, H., & Kubo, I. (2012). Effects of thymol on B16-F10 melanoma cells. Journal of Agricultural and Food Chemistry, 60(10), 2746–2752. https://doi.org/10.1021/jf204525b
  • Schrödinger Release 2021-2: Glide. (2021). LLC, New York, NY.
  • Slamenová, D., Horváthová, E., Sramková, M., Marsálková, L. (2007). DNA-protective effects of two components of essential plant oils carvacrol and thymol on mammalian cells cultured in vitro. Neoplasma, 54(2), 108–112. PMID: 17319782.
  • Temel, H., Atlan, M., Türkmenoğlu, B., Ertaş, A., Erdönmez, D., & Çalışkan, U. K. (2023). In silico and biological activity evaluation of quercetin-boron hybrid compounds, anti-quorum sensing effect as alternative potential against microbial resistance. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 77, 127139. https://doi.org/10.1016/j.jtemb.2023.127139
  • Veldhuizen, E. J. A., Tjeerdsma-van Bokhoven, J. L. M., Zweijtzer, C., Burt, S. A., & Haagsman, H. P. (2006). Structural requirements for the antimicrobial activity of carvacrol. Journal of Agricultural and Food Chemistry, 54(5), 1874–1879. https://doi.org/10.1021/jf052564y
  • Walker, E. H., Perisic, O., Ried, C., Stephens, L., & Williams, R. L. (1999). Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature, 402(6759), 313–320. https://doi.org/10.1038/46319
  • Wang, T., Jónsdóttir, R., & Ólafsdóttir, G. (2009). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chemistry, 116(1), 240–248. https://doi.org/10.1016/j.foodchem.2009.02.041
  • Xu, J., Zhou, F., Ji, B. P., Pei, R. S., & Xu, N. (2008). The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Letters in Applied Microbiology, 47(3), 174–179. https://doi.org/10.1111/j.1472-765X.2008.02407.x
  • Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules (Basel, Switzerland), 21(5), 559. https://doi.org/10.3390/molecules21050559

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.