161
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular insights into sarcopenia: ferroptosis-related genes as diagnostic and therapeutic targets

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 25 Jul 2023, Accepted 26 Oct 2023, Published online: 16 Jan 2024

References

  • Abellan van Kan, G., Cderbaum, J. M., Cesari, M., Dahinden, P., Fariello, R. G., Fielding, R. A., Goodpaster, B. H., Hettwer, S., Isaac, M., Laurent, D., Morley, J. E., Pahor, M., Rooks, D., Roubenoff, R., Rutkove, S. B., Shaheen, A., Vamvakas, S., Vrijbloed, J. W., & Vellas, B. (2011). Sarcopenia: Biomarkers and imaging (International Conference on Sarcopenia research). The Journal of Nutrition, Health & Aging, 15(10), 834–846. https://doi.org/10.1007/s12603-011-0365-1
  • Ali, A., Khan, U. K., Ullah, W., & Aslam, M. (2022). Advancement in Medicinal plants transcriptomic approaches for deciphering bioactive secondary metabolites.
  • Altun, M., Edström, E., Spooner, E., Flores-Moralez, A., Bergman, E., Tollet-Egnell, P., Norstedt, G., Kessler, B. M., & Ulfhake, B. (2007). Iron load and redox stress in skeletal muscle of aged rats. Muscle & Nerve, 36(2), 223–233. https://doi.org/10.1002/mus.20808
  • Bröer, S., & Bröer, A. (2017). Amino acid homeostasis and signalling in mammalian cells and organisms. The Biochemical Journal, 474(12), 1935–1963. https://doi.org/10.1042/BCJ20160822
  • Cesari, M., Fielding, R. A., Pahor, M., Goodpaster, B., Hellerstein, M., van Kan, G. A., Anker, S. D., Rutkove, S., Vrijbloed, J. W., Isaac, M., Rolland, Y., M'rini, C., Aubertin-Leheudre, M., Cedarbaum, J. M., Zamboni, M., Sieber, C. C., Laurent, D., Evans, W. J., Roubenoff, R., Morley, J. E., & Vellas, B. (2012). Biomarkers of sarcopenia in clinical trials-recommendations from the International Working Group on Sarcopenia. Journal of Cachexia, Sarcopenia and Muscle, 3(3), 181–190. https://doi.org/10.1007/s13539-012-0078-2
  • Chen, Y., & Wang, X. (2020). miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Research, 48(D1), D127–D131. https://doi.org/10.1093/nar/gkz757
  • Chen, Y.-Y., Kao, T.-W., Chiu, Y.-L., Peng, T.-C., Yang, H.-F., & Chen, W.-L. (2021). Association between interleukin-12 and sarcopenia. Journal of Inflammation Research, 14, 2019–2029. https://doi.org/10.2147/JIR.S313085
  • Chin, C.-H., Chen, S.-H., Wu, H.-H., Ho, C.-W., Ko, M.-T., & Lin, C.-Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8 Suppl 4(Suppl 4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11
  • Clegg, A., & Hassan-Smith, Z. (2018). Frailty and the endocrine system. The Lancet. Diabetes & Endocrinology, 6(9), 743–752. https://doi.org/10.1016/S2213-8587(18)30110-4
  • Cruz-Jentoft, A. J., & Sayer, A. A. (2019). Sarcopenia. Lancet (London, England), 393(10191), 2636–2646. https://doi.org/10.1016/S0140-6736(19)31138-9
  • Davis, S., & Meltzer, P. S. (2007). GEOquery: A bridge between the gene expression omnibus (GEO) and BioConductor. Bioinformatics (Oxford, England), 23(14), 1846–1847. https://doi.org/10.1093/bioinformatics/btm254
  • DeRuisseau, K. C., Park, Y.-M., DeRuisseau, L. R., Cowley, P. M., Fazen, C. H., & Doyle, R. P. (2013). Aging-related changes in the iron status of skeletal muscle. Experimental Gerontology, 48(11), 1294–1302. https://doi.org/10.1016/j.exger.2013.08.011
  • Dhillon, R. J. S., & Hasni, S. (2017). Pathogenesis and management of sarcopenia. Clinics in Geriatric Medicine, 33(1), 17–26. https://doi.org/10.1016/j.cger.2016.08.002
  • Dinh, P., Tran, C., Dinh, T., Ali, A., & Pan, S. (2023). Hsa_circRNA_0000284 acts as a ceRNA to participate in coronary heart disease progression by sponging miRNA-338-3p via regulating the expression of ETS1. Journal of Biomolecular Structure & Dynamics, 1–14. https://doi.org/10.1080/07391102.2023.2225109
  • Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B., III., & Stockwell, B. R. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042
  • Dodd, S. L., Hain, B., Senf, S. M., & Judge, A. R. (2009). Hsp27 inhibits IKKβ-induced NF-κB activity and skeletal muscle atrophy. FASEB Journal, 23(10), 3415–3423. https://doi.org/10.1096/fj.08-124602
  • Ducker, G. S., & Rabinowitz, J. D. (2017). One-carbon metabolism in health and disease. Cell Metabolism, 25(1), 27–42. https://doi.org/10.1016/j.cmet.2016.08.009
  • Fougere, B., van Kan, G. A., Vellas, B., & Cesari, M. (2018). Redox systems, antioxidants and sarcopenia. Current Protein & Peptide Science, 19(7), 643–648. https://doi.org/10.2174/1389203718666170317120040
  • Freshour, S. L., Kiwala, S., Cotto, K. C., Coffman, A. C., McMichael, J. F., Song, J. J., Griffith, M., Griffith, O. L., & Wagner, A. H. (2021). Integration of the Drug-Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Research, 49(D1), D1144–D1151. https://doi.org/10.1093/nar/gkaa1084
  • Gan, Y., Ye, F., & He, X.-X. (2020). The role of YWHAZ in cancer: A maze of opportunities and challenges. Journal of Cancer, 11(8), 2252–2264. https://doi.org/10.7150/jca.41316
  • Giresi, P. G., Stevenson, E. J., Theilhaber, J., Koncarevic, A., Parkington, J., Fielding, R. A., & Kandarian, S. C. (2005). Identification of a molecular signature of sarcopenia. Physiological Genomics, 21(2), 253–263. https://doi.org/10.1152/physiolgenomics.00249.2004
  • Grossmann, S., Bauer, S., Robinson, P. N., & Vingron, M. (2007). Improved detection of overrepresentation of Gene-Ontology annotations with parent–child analysis. Bioinformatics (Oxford, England), 23(22), 3024–3031. https://doi.org/10.1093/bioinformatics/btm440
  • Huang, S., Xiang, C., & Song, Y. (2022). Identification of the shared gene signatures and pathways between sarcopenia and type 2 diabetes mellitus. PloS One, 17(3), e0265221. https://doi.org/10.1371/journal.pone.0265221
  • Huang, Y., Wu, B., Shen, D., Chen, J., Yu, Z., & Chen, C. (2021). Ferroptosis in a sarcopenia model of senescence accelerated mouse prone 8 (SAMP8). International Journal of Biological Sciences, 17(1), 151–162. https://doi.org/10.7150/ijbs.53126
  • Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27
  • Ladislau, L., Portilho, D. M., Courau, T., Solares-Pérez, A., Negroni, E., Lainé, J., Klatzmann, D., Bonomo, A., Allenbach, Y., Benveniste, O., Riederer, I., Savino, W., Mouly, V., Butler-Browne, G., & Benjamim, C. F. (2018). Activated dendritic cells modulate proliferation and differentiation of human myoblasts. Cell Death & Disease, 9(5), 551. https://doi.org/10.1038/s41419-018-0426-z
  • Laurent, M. R., Dedeyne, L., Dupont, J., Mellaerts, B., Dejaeger, M., & Gielen, E. (2019). Age-related bone loss and sarcopenia in men. Maturitas, 122, 51–56. https://doi.org/10.1016/j.maturitas.2019.01.006
  • Li, H., Guan, K., Liu, D., & Liu, M. (2022). Identification of mitochondria-related hub genes in sarcopenia and functional regulation of MFG-E8 on ROS-mediated mitochondrial dysfunction and cell cycle arrest. Food & Function, 13(2), 624–638. https://doi.org/10.1039/d1fo02610k
  • Li, J., Cao, F., Yin, H.-L., Huang, Z.-J., Lin, Z.-T., Mao, N., Sun, B., & Wang, G. (2020). Ferroptosis: Past, present and future. Cell Death & Disease, 11(2), 88. https://doi.org/10.1038/s41419-020-2298-2
  • Li, J.-H., Liu, S., Zhou, H., Qu, L.-H., & Yang, J.-H. (2014). starBase v2. 0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 42(Database issue), D92–D97. https://doi.org/10.1093/nar/gkt1248
  • Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., & Tamayo, P. (2015). The molecular signatures database hallmark gene set collection. Cell Systems, 1(6), 417–425. https://doi.org/10.1016/j.cels.2015.12.004
  • Liu, L., Koike, H., Ono, T., Hayashi, S., Kudo, F., Kaneda, A., Kagechika, H., Manabe, I., Nakashima, T., & Oishi, Y. (2021). Identification of a KLF5-dependent program and drug development for skeletal muscle atrophy. Proceedings of the National Academy of Sciences of the United States of America, 118(35), e2102895118.. https://doi.org/10.1073/pnas.2102895118
  • Marzetti, E., Calvani, R., Tosato, M., Cesari, M., Di Bari, M., Cherubini, A., Collamati, A., D'Angelo, E., Pahor, M., Bernabei, R., & Landi, F. (2017). Sarcopenia: An overview. Aging Clinical and Experimental Research, 29(1), 11–17. https://doi.org/10.1007/s40520-016-0704-5
  • Melov, S., Tarnopolsky, M. A., Beckman, K., Felkey, K., & Hubbard, A. (2007). Resistance exercise reverses aging in human skeletal muscle. PloS One, 2(5), e465. https://doi.org/10.1371/journal.pone.0000465
  • Migliavacca, E., Tay, S. K. H., Patel, H. P., Sonntag, T., Civiletto, G., McFarlane, C., Forrester, T., Barton, S. J., Leow, M. K., Antoun, E., Charpagne, A., Seng Chong, Y., Descombes, P., Feng, L., Francis-Emmanuel, P., Garratt, E. S., Giner, M. P., Green, C. O., Karaz, S., … Feige, J. N. (2019). Mitochondrial oxidative capacity and NAD(+) biosynthesis are reduced in human sarcopenia across ethnicities. Nature Communications, 10(1), 5808. https://doi.org/10.1038/s41467-019-13694-1
  • Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., Hoang, C. D., Diehn, M., & Alizadeh, A. A. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nature Methods, 12(5), 453–457. https://doi.org/10.1038/nmeth.3337
  • Pascual-Fernández, J., Fernández-Montero, A., Córdova-Martínez, A., Pastor, D., Martínez-Rodríguez, A., & Roche, E. (2020). Sarcopenia: Molecular Pathways and Potential Targets for Intervention. International Journal of Molecular Sciences, 21(22), 8844. https://doi.org/10.3390/ijms21228844
  • Pazit, L., Jeremy, D., Nancy, B., Michael, B., George, E., & Hill, K. D. (2018). Safety and feasibility of high speed resistance training with and without balance exercises for knee osteoarthritis: A pilot randomised controlled trial. Physical Therapy in Sport, 34, 154–163. https://doi.org/10.1016/j.ptsp.2018.10.001
  • Pirinen, E., Auranen, M., Khan, N. A., Brilhante, V., Urho, N., Pessia, A., Hakkarainen, A., Kuula, J., Heinonen, U., Schmidt, M. S., Haimilahti, K., Piirilä, P., Lundbom, N., Taskinen, M.-R., Brenner, C., Velagapudi, V., Pietiläinen, K. H., & Suomalainen, A. (2020). Niacin cures systemic NAD(+) deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metabolism, 31(6), 1078–1090.e5. https://doi.org/10.1016/j.cmet.2020.04.008
  • Poussard, S., Pires‐Alves, A., Diallo, R., Dupuy, J., & Dargelos, E. (2013). A natural antioxidant pine bark extract, Oligopin®, regulates the stress chaperone HSPB1 in human skeletal muscle cells: A proteomics approach. Phytotherapy Research: PTR, 27(10), 1529–1535. https://doi.org/10.1002/ptr.4895
  • Qiu, Y., Cao, Y., Cao, W., Jia, Y., & Lu, N. (2020). The application of ferroptosis in diseases. Pharmacological Research, 159, 104919. https://doi.org/10.1016/j.phrs.2020.104919
  • Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47–e47. https://doi.org/10.1093/nar/gkv007
  • Solovyeva, E. M., Ibebunjo, C., Utzinger, S., Eash, J. K., Dunbar, A., Naumann, U., Zhang, Y., Serluca, F. C., Demirci, S., Oberhauser, B., Black, F., Rausch, M., Hoersch, S., & Meyer, A. S. (2021). New insights into molecular changes in skeletal muscle aging and disease: Differential alternative splicing and senescence. Mechanisms of Ageing and Development, 197, 111510. https://doi.org/10.1016/j.mad.2021.111510
  • Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., Stein, T. I., Nudel, R., Lieder, I., Mazor, Y., Kaplan, S., Dahary, D., Warshawsky, D., Guan-Golan, Y., Kohn, A., Rappaport, N., Safran, M., & Lancet, D. (2016). The GeneCards suite: From gene data mining to disease genome sequence analyses. Current Protocols in Bioinformatics, 54(1), 1.30.1–1.30.33. https://doi.org/10.1002/cpbi.5
  • Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15545–15550. https://doi.org/10.1073/pnas.0506580102
  • Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Yamauchi, J., Takai, S., Matsushima-Nishiwaki, R., Hanai, Y., Doi, T., Kato, H., Ogura, S., Kato, K., Tokuda, H., & Kozawa, O. (2007). (−) Epigallocatechin gallate inhibits prostaglandin D2-stimulated HSP27 induction via suppression of the p44/p42 MAP kinase pathway in osteoblasts. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 77(3-4), 173–179. https://doi.org/10.1016/j.plefa.2007.09.001
  • Yang, H., Tian, W., & Zhou, B. (2022). Sarcopenia and a 5-mRNA risk module as a combined factor to predict prognosis for patients with stomach adenocarcinoma. Genomics, 114(1), 361–377. https://doi.org/10.1016/j.ygeno.2021.12.011
  • Yu, G. (2020). Gene ontology semantic similarity analysis using GOSemSim. Stem Cell Transcriptional Networks: Methods and Protocols, 2117, 207–215.
  • Yu, G., Wang, L.-G., Han, Y., & He, Q.-Y. (2012). clusterProfiler: An R package for comparing biological themes among gene clusters. Omics, 16(5), 284–287. https://doi.org/10.1089/omi.2011.0118
  • Zhou, K.-R., Liu, S., Sun, W.-J., Zheng, L.-L., Zhou, H., Yang, J.-H., & Qu, L.-H. (2017). ChIPBase v2.0: Decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Research, 45(D1), D43–D50. https://doi.org/10.1093/nar/gkw965
  • Zhou, N., & Bao, J. (2020). FerrDb: A manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database, 2020, baaa021. https://doi.org/10.1093/database/baaa021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.