126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In silico exploration of the potential inhibitory activities of in-house and ZINC database lead compounds against alpha-glucosidase using structure-based virtual screening and molecular dynamics simulation approach

, , , , , , , & show all
Received 16 May 2023, Accepted 14 Sep 2023, Published online: 31 Jan 2024

References

  • Alrefai, H., Allababidi, H., Levy, S., & Levy, J. (2002). The endocrine system in diabetes mellitus. Endocrine, 18(2), 105–119. https://doi.org/10.1385/ENDO:18:2:105
  • Association, A. D. (2014). Standards of medical care in diabetes–2014. Diabetes Care, 37, S14–S80.
  • Bae, J. H., Han, K.-D., Ko, S.-H., Yang, Y. S., Choi, J. H., Choi, K. M., Kwon, H.-S., & Won, K. C. (2022). Diabetes fact sheet in Korea 2021. Diabetes & Metabolism Journal, 46(3), 417–426. https://doi.org/10.4093/dmj.2022.0106
  • Bello, N. A., Pfeffer, M. A., Skali, H., McGill, J. B., Rossert, J., Olson, K. A., Weinrauch, L., Cooper, M. E., de Zeeuw, D., Rossing, P., McMurray, J. J. V., & Solomon, S. D. (2014). Retinopathy and clinical outcomes in patients with type 2 diabetes mellitus, chronic kidney disease, and anemia. BMJ Open Diabetes Research & Care, 2(1), e000011. https://doi.org/10.1136/bmjdrc-2013-000011
  • Bibi, S., & Sakata, K. (2016). Current status of computer-aided drug design for type 2 diabetes. Current Computer Aided-Drug Design, 12(2), 167–177. https://doi.org/10.2174/1573409912666160426120709
  • Chaudhury, A., Duvoor, C., Reddy Dendi, V. S., Kraleti, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N. S., Montales, M. T., Kuriakose, K., Sasapu, A., Beebe, A., Patil, N., Musham, C. K., Lohani, G. P., & Mirza, W. (2017). Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Frontiers in Endocrinology, 8, 6. https://doi.org/10.3389/fendo.2017.00006
  • Chen, X., Zheng, Y., & Shen, Y. (2006). Voglibose (Basen®, AO-128), one of the most important α-glucosidase inhibitors. Current Medicinal Chemistry, 13(1), 109–116. https://doi.org/10.2174/092986706789803035
  • Chiasson, J.-L. (2006). Acarbose for the prevention of diabetes, hypertension, and cardiovascular disease in subjects with impaired glucose tolerance: The study to prevent non-insulin-dependent diabetes mellitus (STOP-NIDDM) trial. Endocrine Practice: Official Journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists, 12 Suppl 1, 25–30. https://doi.org/10.4158/EP.12.S1.25
  • Damsud, T., Chanwun, T., & Kaewpiboon, C. (2017). Antidiabetic agents with α-glucosidase inhibition and antioxidant capacity from the shoots of Clausena cambodiana Guill. Int. J. Agric. Technol, 13(4), 449–456.
  • Daud, Saima, Abid, Obaid-ur-Rahman, Sardar, Asma, Shah, Basit Ali, Rafiq, Muhammad, Wadood, Abdul, Ghufran, Mehreen, Rehman, Wajid, Iftikhar, Fatima, Sultana, Rifhat, Daud, Habiba, Niaz, Basit, Zain-ul-Wahab, (2022). Design, synthesis, in vitro evaluation, and docking studies on ibuprofen derived 1, 3, 4-oxadiazole derivatives as dual α-glucosidase and urease inhibitors. Medicinal Chemistry Research, 2, 31316–336. https://doi.org/10.1007/s00044-021-02814-6
  • Dong, Y., Zhang, B., Sun, W., & Xing, Y. (2019). Intervention of Prediabetes by Flavonoids from Oroxylum indicum Bioactive Food as Dietary Interventions for Diabetes. (pp. 559–575): Elsevier.
  • Esser, N., Paquot, N., & Scheen, A. J. (2015). Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opinion on Investigational Drugs, 24(3), 283–307. https://doi.org/10.1517/13543784.2015.974804
  • Ferreira, S. B., Sodero, A. C., Cardoso, M. F., Lima, E. S., Kaiser, C. R., Silva, F. P., Jr,., & Ferreira, V. F. (2010). Synthesis, biological activity, and molecular modeling studies of 1 h-1, 2, 3-triazole derivatives of carbohydrates as α-glucosidases inhibitors. Journal of Medicinal Chemistry, 53(6), 2364–2375. https://doi.org/10.1021/jm901265h
  • Ghufran, M., Khan, H. A., Ullah, M., Ghufran, S., Ayaz, M., Siddiq, M., Hassan, S. S. U., & Bungau, S. (2022). In silico strategies for designing of peptide inhibitors of oncogenic K-Ras G12V mutant: Inhibiting cancer growth and proliferation. Cancers, 14(19), 4884. https://doi.org/10.3390/cancers14194884
  • Ghufran, M., Rehman, A. U., Ayaz, M., Ul-Haq, Z., Uddin, R., Azam, S. S., & Wadood, A. (2023). New lead compounds identification against KRas mediated cancers through pharmacophore-based virtual screening and in vitro assays. Journal of Biomolecular Structure & Dynamics, 41(16), 8053–8067. https://doi.org/10.1080/07391102.2022.2128878
  • Ghufran, M., Ullah, M., Khan, H. A., Ghufran, S., Ayaz, M., Siddiq, M., Abbas, S. Q., Hassan, S. S. U., & Bungau, S. (2023). In-silico lead druggable compounds identification against SARS COVID-19 main protease target from in-house, chembridge and zinc databases by structure-based virtual screening, molecular docking and molecular dynamics simulations. Bioengineering, 10(1), 100. https://doi.org/10.3390/bioengineering10010100
  • Halim, S. A., Jabeen, S., Khan, A., & Al-Harrasi, A. (2021). Rational design of novel inhibitors of α-glucosidase: An application of quantitative structure activity relationship and structure-based virtual screening. Pharmaceuticals, 14(5), 482. https://doi.org/10.3390/ph14050482
  • Hardy, K., Brand-Miller, J., Brown, K. D., Thomas, M. G., & Copeland, L. (2015). The importance of dietary carbohydrate in human evolution. The Quarterly Review of Biology, 90(3), 251–268. https://doi.org/10.1086/682587
  • Hassan, S. S., Tiwari, S., Guimarães, L. C., Jamal, S. B., Folador, E., Sharma, N. B., de Castro Soares, S., Almeida, S., Ali, A., Islam, A., Póvoa, F. D., de Abreu, V. A. C., Jain, N., Bhattacharya, A., Juneja, L., Miyoshi, A., Silva, A., Barh, D., Turjanski, A. G., Azevedo, V., & Ferreira, R. S. (2014). Proteome scale comparative modeling for conserved drug and vaccine targets identification in Corynebacterium pseudotuberculosis. BMC Genomics, 15 Suppl 7(Suppl 7), S3. https://doi.org/10.1186/1471-2164-15-S7-S3
  • Hoang, T. X., Trovato, A., Seno, F., Banavar, J. R., & Maritan, A. (2004). Geometry and symmetry presculpt the free-energy landscape of proteins. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 7960–7964. https://doi.org/10.1073/pnas.0402525101
  • Jiao, Y., Hua, D., Huang, D., Zhang, Q., & Yan, C. (2018). Characterization of a new heteropolysaccharide from green guava and its application as an α-glucosidase inhibitor for the treatment of type II diabetes. Food & Function, 9(7), 3997–4007. https://doi.org/10.1039/c8fo00790j
  • Kashtoh, H., & Baek, K.-H. (2022). Recent updates on phytoconstituent alpha-glucosidase inhibitors: An approach towards the treatment of type two diabetes. Plants, 11(20), 2722. https://doi.org/10.3390/plants11202722
  • Li, M., Song, L. J., & Qin, X. Y. (2014). Advances in the cellular immunological pathogenesis of type 1 diabetes. Journal of Cellular and Molecular Medicine, 18(5), 749–758. https://doi.org/10.1111/jcmm.12270
  • Li, W., Yuan, G., Pan, Y., Wang, C., & Chen, H. (2017). Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: A review. Frontiers in Pharmacology, 8, 74. https://doi.org/10.3389/fphar.2017.00074
  • Li, X., & Tan, X. (2022). Exploring the mechanism of the cystic fibrosis transmembrane conductance regulator-ATP binding through molecular dynamics and potential of mean force simulations.
  • Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235–249. https://doi.org/10.1016/s1056-8719(00)00107-6
  • Liu, M., Zhang, W., Wei, J., & Lin, X. (2011). Synthesis and α-glucosidase inhibitory mechanisms of bis (2, 3-dibromo-4, 5-dihydroxybenzyl) ether, a potential marine bromophenol α-glucosidase inhibitor. Marine Drugs, 9(9), 1554–1565. https://doi.org/10.3390/md9091554
  • Liu, S.-K., Hao, H., Bian, Y., Ge, Y.-X., Lu, S., Xie, H.-X., Wang, K.-M., Tao, H., Yuan, C., Zhang, J., Zhang, J., Jiang, C.-S., & Zhu, K. (2021). Discovery of new α-glucosidase inhibitors: Structure-based virtual screening and biological evaluation. Frontiers in Chemistry, 9, 639279. https://doi.org/10.3389/fchem.2021.639279
  • Mahnashi, M. H., Alqahtani, Y. S., Alyami, B. A., Alqarni, A. O., Alqahl, S. A., Ullah, F., Sadiq, A., Zeb, A., Ghufran, M., Kuraev, A., Nawaz, A., & Ayaz, M. (2022). HPLC-DAD phenolics analysis, α-glucosidase, α-amylase inhibitory, molecular docking and nutritional profiles of Persicaria hydropiper L. BMC Complementary Medicine and Therapies, 22(1), 26. https://doi.org/10.1186/s12906-022-03510-7
  • Moelands, S. V., Lucassen, P. L., Akkermans, R. P., De Grauw, W. J., & Van de Laar, F. A, Cochrane Metabolic and Endocrine Disorders Group. (2018). Alpha‐glucosidase inhibitors for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, 2018(12). https://doi.org/10.1002/14651858.CD005061.pub3
  • Patel, S. (2016). Cerebrovascular complications of diabetes: Alpha glucosidase inhibitor as potential therapy. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones et Metabolisme, 48(2), 83–91. https://doi.org/10.1055/s-0035-1565181
  • Pili, R., Chang, J., Partis, R. A., Mueller, R. A., Chrest, F. J., & Passaniti, A. (1995). The α-glucosidase I inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth. Cancer Research, 55(13), 2920–2926.
  • Proença, C., Freitas, M., Ribeiro, D., Oliveira, E. F. T., Sousa, J. L. C., Tomé, S. M., Ramos, M. J., Silva, A. M. S., Fernandes, P. A., & Fernandes, E. (2017). α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure–activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1216–1228. https://doi.org/10.1080/14756366.2017.1368503
  • Rashid, K., Chowdhury, S., Ghosh, S., & Sil, P. C. (2017). Curcumin attenuates oxidative stress induced NFκB mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes. Biochemical Pharmacology, 143, 140–155. https://doi.org/10.1016/j.bcp.2017.07.009
  • Sakulkeo, O., Wattanapiromsakul, C., Pitakbut, T., & Dej-Adisai, S. (2022). Alpha-glucosidase inhibition and molecular docking of isolated compounds from traditional thai medicinal plant, Neuropeltis racemosa Wall. Molecules (Basel, Switzerland), 27(3), 639. https://doi.org/10.3390/molecules27030639
  • Saltos, M. B. V., Puente, B. F. N., Faraone, I., Milella, L., De Tommasi, N., & Braca, A. (2015). Inhibitors of α-amylase and α-glucosidase from Andromachia igniaria Humb. & Bonpl. Phytochemistry Letters, 14, 45–50. https://doi.org/10.1016/j.phytol.2015.08.018
  • Shimada, Y., Nishimura, E., Hoshina, H., Kobayashi, H., Higuchi, T., Eto, Y., … Ohashi, T. (2015). Proteasome inhibitor Bortezomib enhances the activity of multiple mutant forms of lysosomal α-glucosidase in Pompe disease. JIMD Reports, 18, 33–39. volume
  • Sosa-Peinado, A., León-Cruz, E., Velázquez-López, I., Matuz-Mares, D., Cano-Sánchez, P., & González-Andrade, M. (2022). Theoretical-experimental studies of calmodulin-peptide interactions at different calcium equivalents. Journal of Biomolecular Structure & Dynamics, 40(6), 2689–2700. https://doi.org/10.1080/07391102.2020.1841679
  • Stein, S. A., Lamos, E. M., & Davis, S. N. (2013). A review of the efficacy and safety of oral antidiabetic drugs. Expert Opinion on Drug Safety, 12(2), 153–175. https://doi.org/10.1517/14740338.2013.752813
  • Tripathi, B. K., & Srivastava, A. K. (2006). Diabetes mellitus: Complications and therapeutics. Medical Science Monitor. 12(7), 130–147.
  • Tundis, R., Loizzo, M., & Menichini, F. (2010). Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Reviews in Medicinal Chemistry, 10(4), 315–331. https://doi.org/10.2174/138955710791331007
  • Wei-Ya, L., Yu-Qing, D., Yang-Chun, M., Xin-Hua, L., Ying, M., & Wang, R.-L. (2019). Exploring the cause of the inhibitor 4AX attaching to binding site disrupting protein tyrosine phosphatase 4A1 trimerization by molecular dynamic simulation. Journal of Biomolecular Structure & Dynamics, 37(18), 4840–4851. https://doi.org/10.1080/07391102.2019.1567392
  • Wilcox, G. (2005). Insulin and insulin resistance. Clinical Biochemist Reviews, 26(2), 19.
  • Wu, P.-P., Zhang, B.-J., Cui, X.-P., Yang, Y., Jiang, Z.-Y., Zhou, Z.-H., Zhong, Y.-Y., Mai, Y.-Y., Ouyang, Z., Chen, H.-S., Zheng, J., Zhao, S.-Q., & Zhang, K. (2017). Synthesis and biological evaluation of novel ursolic acid analogues as potential α-glucosidase inhibitors. Scientific Reports, 7(1), 45578. https://doi.org/10.1038/srep45578
  • Zimmet, P., Alberti, K., & Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature, 414(6865), 782–787. https://doi.org/10.1038/414782a
  • Zwanzig, R. (1973). Nonlinear generalized Langevin equations. Journal of Statistical Physics, 9(3), 215–220. https://doi.org/10.1007/BF01008729

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.