79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Unearthing the inhibitory potential of phytochemicals from Lawsonia inermis L. and some drugs against dengue virus protein NS1: an in silico approach

, , , , , & show all
Received 22 Jun 2023, Accepted 18 Dec 2023, Published online: 29 Dec 2023

References

  • Abu-Izneid, T., Rauf, A., Bawazeer, S., Wadood, A., & Patel, S. (2018). Anti-dengue, cytotoxicity, antifungal, and in silico study of the newly synthesized 3-o-phospo-α-d-glucopyranuronic acid compound. BioMed Research International, 8648956, 1–5. https://doi.org/10.1155/2018/8648956
  • Adiga, A., Gandhi, A., Pradeep, P., & Hegde, L. (2022). Comprehensive review on Madayantika (Lawsonia inermis L.). Journal of Ayurveda and Integrated Medicinal Sciences, 7(10), 204–210. https://jaims.in/jaims/article/view/2134
  • Ahmad, I., & Beg, A. Z. (2001). Antimicrobial and phytochemical studies on 45 Indian medicinal plants multi-drug resistant human pathogens. Journal of Ethnopharmacology, 74(2), 113–123. https://doi.org/10.1016/s0378-8741(00)00335-4
  • Alonso, H., Bliznyuk, A., A., & Gready, J. E. (2006). Combining docking and molecular dynamic simulations in drug design. Medicinal Research Reviews, 26(5), 531–568. https://doi.org/10.1002/med.20067
  • Badshah, S., L., Faisal, S., Muhammad, A., Poulson, B., G., Emwas, A., H., & Jaremko, M. (2021). Antiviral activities of flavonoids. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 140, 111596. https://doi.org/10.1016/j.biopha.2021.111596
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bhatt, S., Gething, P., W., Brady, O., J., Messina, J., P., Farlow, A., W., Moyes, C., L., Drake, J., M., Brownstein, J., S., Hoen, A., G., Sankoh, O., Myers, M., F., George, D., B., Jaenisch, T., Wint, G., R., Simmons, C., P., Scott, T., W., Farrar, J., J., & Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507. https://doi.org/10.1038/nature12060
  • Bhavsar, R., B., Makley, L., N., & Tsonis, P. A. (2010). The other lives of ribosomal proteins. Human Genomics, 4(5), 327. https://doi.org/10.1186/1479-7364-4-5-327
  • Borhani, D. W., & Shaw, D. E. (2012). The future of molecular dynamics simulations in drug discovery. Journal of Computer-Aided Molecular Design, 26(1), 15–26. https://doi.org/10.1007/s10822-011-9517-y
  • Cervantes-Salazar, M., Angel-Ambrocio, A., H., Soto-Acosta, R., Bautista-Carbajal, P., M., Hurtado-Monzon, A., Alcaraz-Estrada, S., L., Ludert, J., E., & Del Angel, R. M. (2015). Dengue virus NS1 protein interacts with the ribosomal protein RPL18: This interaction is required for viral translation and replication in Huh-7 cells. Virology, 484, 113–126. https://doi.org/10.1016/j.virol.2015.05.017
  • Chaudhary, G., Goyal, S., & Poonia, P. (2010). Lawsoniainermis linnaeus: A phytopharmacological review. International Journal of Pharmaceutical Sciences and Drug Research, 2(2), 91–98.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Das, D., Samanta, D., Banerjee, R., Sinha, S., Mallick, B., Ganguli, S., & Roy, D. (2020). Insights into the phytochemical potential of Lawsoniainermis L. for future small molecule based therapeutic applications. International Research Journal of Plant Science, 11, 1–7. https://doi.org/10.14303/irjps.2020.006
  • Datti, Y., & Idris, M. M. (2013). Mosquito repellant activity of the leaf extracts of Lawsonia inermis L. Bayero Journal of Pure and Applied Sciences, 6(2), 27–30. https://doi.org/10.4314/bajopas.v6i2.6
  • Dengue Worldwide Overview, European Centre for Disease Prevention and Control. (2023). https://www.ecdc.europa.eu/en/dengue-monthly
  • Fatriansyah, J., F., Rizqillah, R., K., & Yandi, M., Y. (2022). Molecular docking and molecular dynamics simulation of fisetin, galangin, hesperetin, hesperidin, myricetin, and naringenin against polymerase of dengue virus. Journal of Tropical Medicine, 2022, 7254990–7254912. https://doi.org/10.1155/2022/7254990
  • Hariono, M., Choi, S., B., Roslim, R., F., Nawi, M., S., Tan, M., L., Kamarulzaman, E., E., Mohamed, N., Yusof, R., Othman, S., Abd, Rahman, N., Othman, R., & Wahab, H. A. (2019). Thioguanine-based DENV-2 NS2B/NS3 protease inhibitors: Virtual screening, synthesis, biological evaluation and molecular modelling. PloS One, 14(1), e0210869. https://doi.org/10.1371/journal.pone.0210869
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:121463::AID-JCC43.0.CO;2-H
  • Hospital, A., Goñi, J., R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry: AABC, 8, 37–47. https://doi.org/10.2147/aabc.s70333
  • Karplus, M., & McCammon, J. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology, 9(9), 646–652. https://doi.org/10.1038/nsb0902-646
  • Khanavi, M., Vatandoost, H., Khosravi-Dehaghi, N., Sanei-Dehkordi, A., Sedaghat, M., M., Hadjiakhoondi, A., & Hadjiakhoondi, F. (2013). Larvicidal activities of some Iranian native plants against the main malaria vector, Anopheles stephensi. Acta Medica Iranica, 51(3), 141–147.
  • Kowalczyk, M., Golonko, A., Świsłocka, R., Kalinowska, M., Parcheta, M., Swiergiel, A., & Lewandowski, W. (2021). Drug design strategies for the treatment of viral disease. Plant phenolic compounds and their derivatives. Frontiers in Pharmacology, 12, 709104. https://doi.org/10.3389/fphar.2021.709104
  • Kudlu, C. (2016). Keeping the doctor in the loop: Ayurvedic pharmaceuticals in Kerala. Anthropology & Medicine, 23(3), 275–294. https://doi.org/10.1080/13648470.2016.1181520
  • Kumari, R., Kumar, R., & Lynn, A, Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kutzner, C., Kniep, C., Cherian, A., Nordstrom, L., Grubmüller, H., de Groot, B., & Gapsys, V. L. (2022). GROMACS in the cloud: A global supercomputer to speed up alchemical drug design. Journal of Chemical Information and Modeling, 62(7), 1691–1711. https://doi.org/10.1021/acs.jcim.2c00044
  • Li, Z., Gu, J., Zhuang, H., Kang, L., Zhao, X., & Guo, Q. (2015). Adaptive molecular docking method based on information entropy genetic algorithm. Applied Soft Computing, 26, 299–302. https://doi.org/10.1016/j.asoc.2014.10.008
  • Liu, K., Watanabe, E., & Kokubo, H. (2017). Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. Journal of Computer-Aided Molecular Design, 31(2), 201–211. https://doi.org/10.1007/s10822-016-0005-2
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Mosquera-Yuqui, F., Lopez-Guerra, N., & Moncayo-Palacio, E. A. (2020). Targeting the 3CLpro and RdRp of SARS-CoV-2 with phytochemicals from medicinal plants of the andean region: Molecular docking and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 40(5), 2010–2023. https://doi.org/10.1080/07391102.2020.1835716
  • Murugesan, S., & Daniel, T. (2008). Evaluation of certain insecticidal plants for the control of vector mosquitoes viz. Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti. Applied Entomology and Zoology, 43(1), 57–63. https://doi.org/10.1303/aez.2008.57
  • Nguyen, P. T. V., Nguyen, G. L. T., Thi Đinh, O., Duong, C. Q., Nguyen, L. H., & Truong, T. N. (2022). In search of suitable protein targets for anti-malarial and anti-dengue drug discovery. Journal of Molecular Structure, 1256, 132520. https://doi.org/10.1016/j.molstruc.2022.132520
  • Olaitan, M., & Nwadike, B. (2022). In vitro inhibitory potential of Lawsonia inermis extracts against multidrug resistant clinically-relevant bacteria: A phytochemical, quantitative antimicrobial and toxicological assessment. International Journal of Traditional and Complementary Medicine Research, 3(3), 167–183. https://doi.org/10.53811/ijtcmr.1193807
  • Paranavitane, S. A., Gomes, L., Kamaladasa, A., Adikari, T. N., Wickramasinghe, N., Jeewandara, C., Shyamali, N. L., Ogg, G. S., & Malavige, G. N. (2014). Dengue NS1 antigen as a marker of severe clinical disease. BMC Infectious Diseases, 14(1), 570. https://doi.org/10.1186/s12879-014-0570-8
  • Pradhan, R., Dandawate, P., Vyas, A., Padhye, S., Biersack, B., Schobert, R., Ahmad, A., & Sarkar, F. H. (2012). From body art to anticancer activities: Perspectives on medicinal properties of henna. Current Drug Targets, 13(14), 1777–1798. https://doi.org/10.2174/138945012804545588
  • Ponugoti, M. (2018). A pharmacological and toxicological review of Lawsoniainermis. International Journal of Pharmaceutical Sciences and Research, 9, 902–915. https://doi.org/10.13040/IJPSR.0975-8232.9(3).902-15
  • Purohit, P., Sahoo, S., Panda, M., Sahoo, P. S., & Meher, B. R. (2022). Targeting the DENV NS2B-NS3 protease with active antiviral phytocompounds: Structure-based virtual screening, molecular docking and molecular dynamics simulation studies. Journal of Molecular Modeling, 28(11), 365. https://doi.org/10.1007/s00894-022-05355-w
  • Rahman, M. M., Biswas, S., Islam, J. K., Paul, A. S., Mahato, S. K., Ali, M. A., & Halim, M. A. (2021). Antiviral phytochemicals as potent inhibitors against NS3 protease of dengue virus. Computers in Biology and Medicine, 134, 104492. https://doi.org/10.1016/j.compbiomed.2021.104492
  • Rani, A. C., Sujitha, S., Kalaimathi, K., Vijayakumar, S., Varatharaju, G., Karthikeyan, K., Thiyagarajan, G., Sanjeevi, S. B., & Prabhu, S. (2022). Uncovering of anti-dengue molecules from plants prescribed for dengue: A computational investigation. Chemistry Africa, 5(5), 1321–1336. https://doi.org/10.1007/s42250-022-00421-5
  • Ranjith, D., & Ravikumar, C. (2019). SwissADME predictions of pharmacokinetics and drug-likeliness properties of small molecules present in Ipomea mauritiana Jacq. Journal of Pharmacognosy and Phytochemistry, 8, 2063–2073.
  • Romes, N. B., Abdul Wahab, R., Abdul Hamid, M., Oyewusi, H. A., Huda, N., & Kobun, R. (2021). Thermodynamic stability, in-vitro permeability, and in-silico molecular modeling of the optimal Elaeisguineensis leaves extract water-in-oil nanoemulsion. Scientific Reports, 11(1), 20851. https://doi.org/10.1038/s41598-021-00409-0
  • Salleh, H., M., Chong, S., L., Othman, R., Hazni, H., Ahmad, K., M., Y., Z., M., Y., Fauzi, N., W., Wahab, H., A., Liew, S., Y., & Awang, K. (2019). Dengue protease inhibition activity of selected Malaysian medicinal herbs. Tropical Biomedicine, 36(2), 357–366. https://www.researchgate.net/publication/334317079_Dengue_protease_inhibition_activity_of_selected_Malaysian_medicinal_herbs
  • Sawant, S., Patil, R., Khawate, M., Zambre, V., Shilimkar, V., & Jagtap, S. (2021). Computational assessment of select antiviral phytochemicals as potential SARS-Cov-2 main protease inhibitors: Molecular dynamics guided ensemble docking and extended molecular dynamics. In Silico Pharmacology, 9(1), 44. https://doi.org/10.1007/s40203-021-00107-9
  • Shimu, M., S., S., Mahmud, S., Tallei, T., E., Sami, S., A., Adam, A., A., Acharjee, U., K., Paul, G., K., Emran, T., B., Zaman, S., Uddin, M., S., Saleh, M., A., Alshehri, S., Ghoneim, M., M., Alruwali, M., Obaidullah, A., J., Jui, N., R., Kim, J., & Kim, B. (2022). Phytochemical compound screening to identify novel small molecules against dengue virus: A docking and dynamics study. Molecules (Basel, Switzerland), 27(3), 653. https://doi.org/10.3390/molecules27030653
  • Shruti, Y., Prabhudev, S., M., Channamma, M., Hanamanth, J. K., & Singh, K. C. (2023). Drug likeliness, bioavailability, virtual screening and docking studies of some sulphonamide derivatives. World Journal of Pharmaceutical Research, 12(13), 1094–1107.
  • Songprakhon, P., Thaingtamtanha, T., Limjindaporn, T., Puttikhunt, C., Srisawat, C., Luangaram, P., Dechtawewat, T., Uthaipibull, C., Thongsima, S., Yenchitsomanus, P., T., Malasit, P., & Noisakran, S. (2020). Peptides targeting dengue viral non-structural protein 1 inhibit dengue virus production. Scientific Reports, 10(1), 12933. https://doi.org/10.1038/s41598-020-69515-9
  • The Lancet. (2015). Dengue challenges India’s health system. The Lancet, 386, 10000, 1212. https://doi.org/10.1016/S0140-6736(15)00313-X
  • Teijlingen, A., H., W., A., Swanson, Lau, K., H., A., & Tuttle, T. (2022). Constant pH coarse-grained molecular dynamics with stochastic charge neutralization. Journal of Physical Chemistry Letters, 13(18), 4046–4051. https://doi.org/10.1021/acs.jpclett.2c00544
  • Viale, M., & Vicol, M. (2023). Conserving traditional wisdom in a commodified landscape: Unpacking brand Ayurveda. Journal of Ayurveda and Integrative Medicine, 14(1), 100667. https://doi.org/10.1016/j.jaim.2022.100667
  • Walton, E. B., & Vanvliet, K. J. (2006). Equilibration of experimentally determined protein structures for molecular dynamics simulation. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 74(6 Pt 1), 061901. https://doi.org/10.1103/physreve.74.061901

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.