219
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Recognition of human telomeric G-quadruplex DNA by 1,5-disubstituted diethyl-amido anthraquinone derivative in different ion environments causing thermal stabilization and apoptosis

, , , ORCID Icon & ORCID Icon
Received 09 Oct 2023, Accepted 18 Dec 2023, Published online: 04 Jan 2024

References

  • Agbandje, M., Jenkins, T. C., McKenna, R., Reszka, A. P., & Neidle, S. (1992). Anthracene-9,10-diones as potential anticancer agents. Synthesis, DNA-binding, and biological studies on a series of 2,6-disubstituted derivatives. Journal of Medicinal Chemistry, 35(8), 1418–1429. https://doi.org/10.1021/jm00086a010
  • Armond, R. D., Wood, S., Sun, D., Hurley, L. H., & Ebbinghaus, S. W. (2005). Evidence for the presence of G-quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1α promoter. Biochemistry, 44(49), 16341–16350. https://doi.org/10.1021/bi051618u
  • Barret, P. C., Gustavsson, T., Markovitsi, D., Manet, I., & Monti, S. (2013). Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy. Physical Chemistry Chemical Physics: PCCP, 15(8), 2937–2944. https://doi.org/10.1039/c2cp44056c
  • Cairns, D., Michalitsi, E., Jenkins, T. C., & Mackay, S. P. (2002). Molecular modelling, and cytotoxicity of substituted anthraquinones as inhibitors of human telomerase. Bioorganic & Medicinal Chemistry, 10(3), 803–807. https://doi.org/10.1016/s0968-0896(01)00337-6
  • Cian, A. D., Lacroix, L., Douarre, C., Temime-Smaali, N., Trentesaux, C., Riou, F. J., & Mergny, J. L. (2008). Targeting telomeres and telomerase. Biochimie, 90(1), 131–155. https://doi.org/10.1016/j.biochi.2007.07.011
  • Clark, G. R., Pytel, P. D., Squire, C. J., & Neidle, S. (2003). Structure of the first parallel DNA quadruplex-drug complex. Journal of the American Chemical Society, 125(14), 4066–4067. https://doi.org/10.1021/ja0297988
  • Cogoi, S., Paramasivam, M., Filichev, V., Géci, I., Pedersen, E. B., & Xodo, L. E. (2009). Identification of new G-quadruplex motif in the KRAS promoter and design of pyrene-modified G-4 decoys with antiproliferative activity pancreatic cancer cells. Journal of Medicinal Chemistry, 52(2), 564–568. https://doi.org/10.1021/jm800874t
  • Dai, J., Chen, D., Jones, R. A., Hurley, L. H., & Yang, D. (2006). NMR solution structure of the major G-quadruplex structure formed in the human BCL2 promoter region. Nucleic Acids Research, 34(18), 5133–5144. https://doi.org/10.1093/nar/gkl610
  • Dai, J., Megan, C., Punchihewa, C., Jones, R. A., & Yang, D. (2007a). Structure of the hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: Insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Research, 35(15), 4927–4940. https://doi.org/10.1093/nar/gkm522
  • Dai, J., Punchihewa, C., Ambrus, A., Chen, D., Jones, R. A., & Yang, D. (2007b). Structure of the intramolecular human telomeric G-quadruplex in potassium solution: A novel adenine triple formation. Nucleic Acids Research, 35(7), 2440–2450. https://doi.org/10.1093/nar/gkm009
  • Das, A., & Dutta, S. (2021). Binding studies of aloe-active compounds with G-quadruplex sequences. ACS Omega, 6(28), 18344–18351. https://doi.org/10.1021/acsomega.1c02207
  • Dash, J., Shirude, P. S., Hsu, S. T., Balasubramanian, S. (2008). Diarylethynyl amides that recognize the parallel conformation of genomic promoter DNA G-quadruplexes. Journal of American Chemical Society, 130(47), 15950–15956. http://doi.org/10.1021/ja8046552
  • Dey, A., Anand, K., Singh, A., Prasad, R., & Barthwal, R. (2023). MOSR and NDHA genes comprising G-quadruplex as promising therapeutic targets against Mycobacterium tuberculosis: Molecular recognition by mitoxantrone suppresses replication and gene regulation. Genes, 14(5), 978. https://doi.org/10.3390/genes14050978
  • Dey, A., Pandav, K., Nath, M., Barthwal, R., & Prasad, R. (2022). Binding characterization of anthraquinone derivatives by stabilizing G-quadruplex DNA leads to an anti-cancerous activity. International Journal of Biological Macromolecules, 221, 355–370. https://doi.org/10.1016/j.ijbiomac.2022.08.156
  • Freyer, M. W., Buscaglia, R., Kaplan, K., Cashman, D., Hurley, L. H., & Lewis, E. A. (2007). Biophysical studies of the c-MYC NHE III1 promoter: Model quadruplex interactions with a cationic porphyrin. Biophysical Journal, 92(6), 2007–2015. https://doi.org/10.1529/biophysj.106.097246
  • Huang, H. S., Chen, I. B., Huang, K. F., Lu, W. C., Shieh, F. Y., Huang, Y. Y., Huang, F. C., & Lin, J. J. (2007). Synthesis and human telomerase inhibition of a series of regioisomeric disubstituted amido anthraquinones. Chemical & Pharmaceutical Bulletin, 55(2), 284–292. https://doi.org/10.1248/cpb.55.284
  • Huang, H. S., Chen, T. C., Chen, R. H., Huang, K. F., Huang, F. C., Jhan, J. R., Chen, C. L., Lee, C. C., Lo, Y., & Lin, J. J. (2009). Synthesis, cytotoxicity, and human telomerase inhibition activities of a series of 1,2-heteroannelated anthraquinones and anthra [1,2-d] imidazole-6,11-dione homologues. Bioorganic & Medicinal Chemistry, 17(21), 7418–7428. https://doi.org/10.1016/j.bmc.2009.09.033
  • Huang, H. S., Chiou, J. F., Fong, Y., Hou, C. C., Lu, Y. C., Wang, J. Y., Shih, J. W., Pan, Y. R., & Lin, J. J. (2003). Activation of human telomerase reverse transcriptase expression by some new symmetrical bis-substituted derivatives of the anthraquinone. Journal of Medicinal Chemistry, 46(15), 3300–3307. https://doi.org/10.1021/jm020492l
  • Huang, H. S., Chou, C. L., Guo, C. L., Yuan, C. L., Lu, Y. C., Shieh, F. Y., & Lin, J. J. (2005). Human telomerase inhibition and cytotoxicity of regioisomeric disubstituted amido anthraquinones and aminoanthraquinones. Bioorganic & Medicinal Chemistry, 13(5), 1435–1444. https://doi.org/10.1016/j.bmc.2004.12.036
  • Huang, H. S., Huang, K. F., Li, C. L., Huang, Y. Y., Chiang, Y. H., Huang, F. C., & Lin, J. J. (2008). Synthesis, human telomerase inhibition and anti-proliferative studies of a series of 2,7-bis-substituted amido-anthraquinone derivatives. Bioorganic & Medicinal Chemistry, 16(14), 6976–6986. https://doi.org/10.1016/j.bmc.2008.05.072
  • Hudson, J. S., Brooks, S. C., Graves, D. E. (2009). Interactions of actinomycin D with human telomeric G-quadruplex DNA. Biochemistry, 48(21), 4440–4447. http://doi.org/10.1021/bi900203z
  • Jain, A. K., Reddy, V. V., Paul, A., Muniyappa, K., & Bhattacharya, S. (2009). Synthesis and evaluation of a novel class of G-quadruplex-stabilizing small molecules based on the 1,3-phenylene-bis(piperazinyl benzimidazole) system. Biochemistry, 48(45), 10693–10704. https://doi.org/10.1021/bi9003815
  • Kaluzhny, D., Ilyinsky, N., Shchekotikhin, A., Sinkevich, Y., Tsvetkov, P. O., Tsvetkov, V., Veselovsky, A., Livshits, M., Borisova, O., Shtil, A., & Shchyolkina, A. (2011). Disordering of human telomeric G-quadruplex with novel antiproliferative anthrathiophenedione. PloS One, 6(11), e27151. https://doi.org/10.1371/journal.pone.0027151
  • Krugh, T. R., & Reinhardt, C. G. (1975). Evidence for sequence preferences in the intercalative binding of ethidium bromide to di nucleoside monophosphates. Journal of Molecular Biology, 97(2), 133–162. https://doi.org/10.1016/s0022-2836(75)80031-3
  • Kshirsagar, A. D., Panchal, P. V., Harle, U. N., Nanda, R. K., & Shaikh, H. M. (2014). Anti-inflammatory and anti-arthritic activity of anthraquinone derivatives in rodents. International Journal of Inflammation, 2014, 690596. (https://doi.org/10.1155/2014/690596
  • Kumari, A., Pandav, K., Panwar, A., Nath, M., Peddinti, R. K., & Barthwal, R. (2023). Spectroscopy evidence of interaction of 1,5 disubstituted piperidino-amido anthraquinone derivative with human telomeric G-quadruplex DNA: Basis of anticancer action. Results in Chemistry, 6, 101148. https://doi.org/10.1016/j.rechem.2023.101148
  • Largy, E., Mergny, J. L., & Gabelica, V. (2016). Role of alkali metal ions in G-quadruplex nucleic acid structure and stability. Metal Ions in Life Sciences, 16, 203–258. https://doi.org/10.1007/978-3-319-21756-7_7
  • Li, Q., Xiang, J., Li, X., Chen, L., Xu, X., Tang, Y., Zhou, Q., Li, L., Zhang, H., Sun, H., Guan, A., Yang, Q., Yang, S., & Xu, G. (2009). Stabilizing parallel G-quadruplex DNA by a new class of ligands: Two non-planar alkaloids through interaction in lateral grooves. Biochimie, 91(7), 811–819. https://doi.org/10.1016/j.biochi.2009.03.007
  • Lin, C., Wu, G., Wang, K., Onel, B., Sakai, S., Shao, Y., & Yang, D. (2018). Molecular recognition of the hybrid-2 human telomeric G-quadruplex by epiberberine: Insights into conversion of telomeric G-quadruplex structures. Angewandte Chemie, 130(34), 11054–11059. https://doi.org/10.1002/ange.201804667
  • Liu, R., Liu, J., Wang, S., Wang, Y., Zhang, T., Liu, Y., Geng, X., & Wang, F. (2019). Combined treatment with emodin and a telomerase inhibitor induces significant telomere damage/dysfunction and cell death. Cell Death & Disease, 10(7), 527. https://doi.org/10.1038/s41419-019-1768-x
  • Ndlebe, T., & Schuster, G. B. (2009). Long-distance radical cation transport in DNA: Horizontal charge hopping in a dimeric quadruplex. Organic & Biomolecular Chemistry, 4(21), 4015–4021. https://doi.org/10.1039/B610159C
  • Neidle, S. (2016). Quadruplex nucleic acids as novel therapeutic targets. Journal of Medicinal Chemistry, 59(13), 5987–6011. https://doi.org/10.1021/acs.jmedchem.5b01835
  • Percivalle, C., Sissi, C., Greco, M. L., Musetti, C., Mariani, A., Artese, A., Costa, G., Perrore, M. L., Alcaro, S., & Freccero, M. (2014). Aryl ethynyl anthraquinones: A useful platform for targeting telomeric G-quadruplex structures. Organic & Biomolecular Chemistry, 12(22), 3744–3754. https://doi.org/10.1039/c4ob00220b
  • Perry, P. J., Gowan, S. M., Reszka, A. P., Polucci, P., Jenkins, T. C., Kelland, L. R., & Neidle, S. (1998). 1,4- and 2,6-disubstituted amido anthracene-9,10-dione derivatives as inhibitors of human telomerase. Journal of Medicinal Chemistry, 41(17), 3253–3260. https://doi.org/10.1021/jm9801105
  • Perry, P. J., Reszka, A. P., Wood, A. A., Read, M. A., Gowan, S. M., Dosanjh, H. S., Trent, J. O., Jenkins, T. C., Kelland, L. R., & Neidle, S. (1998). Human telomerase inhibition by regioisomeric disubstituted amido anthracene-9,10-diones. Journal of Medicinal Chemistry, 41(24), 4873–4884. https://doi.org/10.1021/jm981067o
  • Phan, A. T., Luu, K. N., & Patel, D. J. (2006). Different loop arrangements of intramolecular human telomeric (3 + 1) G-quadruplexes in K + solution. Nucleic Acids Research, 34(19), 5715–5719. https://doi.org/10.1093/nar/gkl726
  • Pradeep, T. P., & Barthwal, R. (2016). A 4:1 stoichiometric binding and stabilization of mitoxantrone-parallel stranded G-quadruplex complex established by spectroscopic techniques. Journal of Photochemistry and Photobiology. B, Biology, 162, 106–114. https://doi.org/10.1016/j.jphotobiol.2016.06.019
  • Pradeep, T. P., & Barthwal, R. (2016). NMR structure of dual site of binding of mitoxantrone dimer to apposite groove od parallel stranded G-quadruplex [d-(TTGGGT)4]. Biochimie, 128–129, 59–69. https://doi.org/10.1016/j.biochi.2016.07.005
  • Qu, X., Wan, C., Becker, H. C., Zhong, D., & Zewail, A. H. (2001). The anticancer drug-DNA complex: Femtosecond primary dynamics for anthracycline antibiotics function. Proceedings of the National Academy of Sciences of the United States of America, 98(25), 14212–14217. https://doi.org/10.1073/pnas.241509698
  • Ranjan, N., Davis, E., Xue, L., & Arya, D. P. (2013). Dual recognition of the human telomeric G-quadruplex by a neomycin-anthraquinone conjugate. Chemical Communications (Cambridge, England), 49(51), 5796–5798. https://doi.org/10.1039/c3cc42721h
  • Rankin, S., Reszka, A. P., Huppert, J., Zloh, M., Parkinson, G. N., Todd, A. K., Ladame, S., Balasubramanian, S., & Neidle, S. (2005). Putative DNA G-quadruplex formation within human c-kit Oncogene. Journal of the American Chemical Society, 127(30), 10584–10589. https://doi.org/10.1021/ja050823u
  • Roy, S., Ali, A., Kamra, M., Muniyappa, K., & Bhattacharya, S. (2020). Specific stabilization of promoter G-Quadruplex DNA by 2,6-disubstituted amido anthracene-9,10-dione based dimeric distamycin analogues and their selective cancer cell cytotoxicity. European Journal of Medicinal Chemistry, 195, 112202. https://doi.org/10.1016/j.ejmech.2020.112202
  • Rubio-Magnieto, J., Di Meo, F., Lo, M., Delcourt, C., Clément, S., Norman, P., Richeter, S., Linares, M., & Surin, M. (2015). Binding modes of a core-extended metalloporphyrin to human telomeric DNA G-quadruplexes. Organic & Biomolecular Chemistry, 13(8), 2453–2463. https://doi.org/10.1039/c4ob02097a
  • Sen, D., & Gilbert, W. (1990). A sodium-potassium switch in the formation of four stranded G4-DNA. Nature, 344(6265), 410–414. https://doi.org/10.1038/344410a0
  • Shammas, M. A., Koley, H., Beer, D. G., Li, C., Goyal, R. K., & Munshi, N. C. (2004). Growth arrest, apoptosis, and telomere shortening of Barrett’s-associated adenocarcinoma cells by a telomerase inhibitor. Gastroenterology, 126(5), 1337–1346. https://doi.org/10.1053/j.gastro.2004.01.026
  • Simonsson, T., Kubista, M., & Pecinka, P. (1998). DNA tetraplex formation in the control region of c-myc. Nucleic Acids Research, 26(5), 1167–1172. https://doi.org/10.1093/nar/26.5.1167
  • Spiegel, J., Adhikari, S., & Balasubramanian, S. (2020). The structure and function of G-quadruplexes. Trends in Chemistry, 2(2), 123–136. https://doi.org/10.1016/j.trechm.2019.07.002
  • Sun, D., Guo, K., Rusche, J. J., & Hurley, L. H. (2005). Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Research, 33(18), 6070–6080. https://doi.org/10.1093/nar/gki917
  • Sun, D., Thompson, B., Cathers, B. E., Salazar, M., Kerwin, S. M., Trent, J. O., Jenkins, T. C., Neidle, S., & Hurley, L. H. (1997). Inhibition of human telomerase by a G-quadruplex-interactive compound. Journal of Medicinal Chemistry, 40(14), 2113–2116. https://doi.org/10.1021/jm970199z
  • Tariq, Z., & Barthwal, R. (2019). Affinity of anticancer drug daunomycin toward tetrahymena telomeric G-quadruplex DNA d-[GGGG(TTGGGG)3]. ACS Omega, 4(4), 6347–6359. https://doi.org/10.1021/acsomega.9b00331
  • Tripathi, S., & Barthwal, R. (2018). NMR based structure reveals groove binding of mitoxantrone to two sites of [d-(TTAGGGT)4] having human telomeric DNA sequence leading to thermal stabilization of G-quadruplex. International Journal of Biological Macromolecules, 111, 326–341. https://doi.org/10.1016/j.ijbiomac.2017.12.134
  • Varshney, D., Spiegel, J., Zyner, K., Tannahil, D., Balasubramanian, S. (2020). The regulation and function of DNA and RNA G-quadruplex. Nature, 21, 459–474. http://doi.org/10.1038/s41580-020-0236-x
  • Vorlickova, M., Kejnovska, I., Sagi, J., Renciuk, D., Bednarova, K., Motlova, J., Kypr, J. (2012). Circular dichroism and guanine quadruplexes. Methods, 57(1), 64–75. http://doi.org/10.1016/j.ymeth.2012.03.011
  • Wang, Y., & Patel, D. J. (1993). Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure (London, England: 1993), 1(4), 263–282. https://doi.org/10.1016/0969-2126(93)90015-9
  • Wang, Y., & Patel, D. J. (1993). The regulation and function of DNA and RNA G-quadruplex. Nature, 21(8), 459–474. https://doi.org/10.1038/s41580-020-0236-x
  • Wei, C., Wang, L., Jia, G., Zhou, J., Han, G., & Li, C. (2009). The binding mode of porphyrins with cation side arms to (TG4T)4 G-quadruplex: Spectroscopic evidence. Biophysical Chemistry, 143(1–2), 79–84. https://doi.org/10.1016/j.bpc.2009.04.005
  • White, E. W., Tanious, F., Ismail, M. A., Reszka, A. P., Neidle, S., Boykin, D. W., & Wilson, W., D. (2016). Structure-specific recognition of quadruplex DNA by organic cations: Influence of shape, substituents and charge. Biophysical Chemistry, 126(1–3), 140–153. https://doi.org/10.1016/j.bpc.2006.06.006
  • Włodarczyk, A., Grzybowski, P., Patkowski, A., & Dobek, A. (2005). Effect of ions on the polymorphism, effective charge, and stability of human telomeric DNA. Photon correlation spectroscopy and circular dichroism studies. Journal of Physical Chemistry. B, 109(8), 3594–3605. https://doi.org/10.1021/jp045274d
  • Wright, E. P., Day, H. A., Ibrahim, A. M., Kumar, J., Boswell, L. J., Huguin, C., Stevenson, C. E., Pors, K., & Waller, Z. A. (2016). Mitoxantrone and analogues bind and stabilize i-motif forming DNA sequences. Scientific Reports, 6(1), 39456. https://doi.org/10.1038/srep39456
  • Wu, G., Chen, L., Liu, W., & Yang, D. (2019). Molecular recognition of the hybrid-type G-quadruplexes in human telomeres. Molecules (Basel, Switzerland), 24(8), 1578. https://doi.org/10.3390/molecules24081578
  • Yang, D., & Okamoto, K. (2010). Structural insight into G-quadruplex: Towards new anticancer drugs. Future Medicinal Chemistry, 2(4), 619–646. https://doi.org/10.4155/fmc.09.172
  • Zagotto, G., Ricci, A., Vasquez, E., Sandoli, A., Benedetti, S., Palumbo, M., & Sissi, C. (2011). Tuning G-quadruplex vs double-stranded DNA recognition in regioisomeric lysyl-peptidyl-anthraquinone conjugates. Bioconjugate Chemistry, 22(10), 2126–2135. https://doi.org/10.1021/bc200389w
  • Zagotto, G., Sissi, C., Lucatello, L., Pivetta, C., Cadamuro, S. A., Fox, K. R., Neidle, S., & Palumbo, M. (2008a). Aminoacyl-anthraquinone conjugates as telomerase inhibitors: Synthesis, biophysical and biological evaluation. Journal of Medicinal Chemistry, 51(18), 5566–5574. https://doi.org/10.1021/jm800160v
  • Zagotto, G., Sissi, C., Moro, S., Dal, B. D., Parkinson, G. N., Fox, K. R., Neidle, S., & Palumbo, M. (2008b). Amide bond direction modulates G-quadruplex recognition and telomerase inhibition by 2,6 and 2,7 bis-substituted anthracene dione derivatives. Bioorganic & Medicinal Chemistry, 16(1), 354–361. https://doi.org/10.1016/j.bmc.2007.09.040
  • Zhao, P., Lu, J., Hong, F., Ou, B., Zhang, F., Ma, L., & Guo, H. (2013). Shedding light on the interactions of guanine quadruplexes with tricationic metalloporphyrins. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 108, 1–7. https://doi.org/10.1016/j.saa.20133.01.074

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.