136
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular docking and MD simulations reveal protease inhibitors block the catalytic residues in Prp8 intein of Aspergillus fumigatus: a potential target for antimycotics

, , , , &
Received 03 Oct 2023, Accepted 18 Dec 2023, Published online: 27 Dec 2023

References

  • Allais, C., Bernhardson, D., Brown, A. R., Chinigo, G. M., Desrosiers, J.-N., DiRico, K. J., Hotham, I., Jones, B. P., Kulkarni, S. A., Lewis, C. A., Lira, R., Loach, R. P., Morse, P. D., Mousseau, J. J., Perry, M. A., Peng, Z., Place, D. W., Rane, A. M., Samp, L., … Zanghi, J. M. (2022). Early clinical development of Lufotrelvir as a potential therapy for COVID-19. Organic Process Research & Development, 27(12), 2223-2239. https://doi.org/10.1021/acs.oprd.2c00375
  • Antonopoulou, I., Sapountzaki, E., Rova, U., & Christakopoulos, P. (2022). Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature’s toolbox of bioactive compounds. Computational and Structural Biotechnology Journal, 20, 1306–1344. https://doi.org/10.1016/j.csbj.2022.03.009
  • Arastehfar, A., Carvalho, A., Houbraken, J., Lombardi, L., Garcia-Rubio, R., Jenks, J. D., Rivero-Menendez, O., Aljohani, R., Jacobsen, I. D., Berman, J., Osherov, N., Hedayati, M. T., Ilkit, M., Armstrong-James, D., Gabaldón, T., Meletiadis, J., Kostrzewa, M., Pan, W., Lass-Flörl, C., Perlin, D. S., & Hoenigl, M. (2021). Aspergillus fumigatus and aspergillosis: From basics to clinics. Studies in Mycology, 100(1), 100115. https://doi.org/10.1016/j.simyco.2021.100115
  • Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–W350. https://doi.org/10.1093/NAR/GKW408
  • Ashu, E. E., Korfanty, G. A., Samarasinghe, H., Pum, N., You, M., Yamamura, D., & Xu, J. (2018). Widespread amphotericin B-resistant strains of Aspergillus fumigatus in Hamilton, Canada. Infection and Drug Resistance, 11, 1549–1555. https://doi.org/10.2147/IDR.S170952
  • Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., Millán, C., Park, H., Adams, C., Glassman, C. R., DeGiovanni, A., Pereira, J. H., Rodrigues, A. V., van Dijk, A. A., Ebrecht, A. C., … Baker, D. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6557), 871–876. https://doi.org/10.1126/science.abj8754
  • Beer, K. D., Farnon, E. C., Jain, S., Jamerson, C., Lineberger, S., Miller, J., Berkow, E. L., Lockhart, S. R., Chiller, T., & Jackson, B. R. (2018). Multidrug-resistant Aspergillus fumigatus carrying mutations linked to environmental fungicide exposure—Three states, 2010–2017. MMWR. Morbidity and Mortality Weekly Report, 67(38), 1064–1067. https://doi.org/10.15585/mmwr.mm6738a5
  • Bekker, H., Berendsen, H., Dijkstra, E., Achterop, S., Van Drunen, R., Van der Spoel, D., Sijbers, A., Keegstra, H., Reitsma, B., & Renardus, M. (1993). Gromacs: A parallel computer for molecular dynamics simulations. Physics Computing, 92, 252–256.
  • Ben Chorin, A., Masrati, G., Kessel, A., Narunsky, A., Sprinzak, J., Lahav, S., Ashkenazy, H., & Ben-Tal, N. (2020). ConSurf-DB: An accessible repository for the evolutionary conservation patterns of the majority of PDB proteins. Protein Science, 29(1), 258–267. https://doi.org/10.1002/pro.3779
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bitencourt-Ferreira, G., Veit-Acosta, M., & de Azevedo, W. F. (2019). Van der Waals potential in protein complexes. Methods in Molecular Biology, 2053, 79–91. https://doi.org/10.1007/978-1-4939-9752-7_6
  • Chan, H., Pearson, C. S., Green, C. M., Li, Z., Zhang, J., Belfort, G., Shekhtman, A., Li, H., & Belfort, M. (2016). Exploring intein inhibition by platinum compounds as an antimicrobial strategy. The Journal of Biological Chemistry, 291(43), 22661–22670. https://doi.org/10.1074/jbc.M116.747824
  • Chen, L., Benner, J., & Perler, F. B. (2000). Protein splicing in the absence of an intein penultimate histidine. The Journal of Biological Chemistry, 275(27), 20431–20435. https://doi.org/10.1074/jbc.M000178200
  • Chen, Y., Lu, H., Zhang, N., Zhu, Z., Wang, S., & Li, M. (2020). PremPS: Predicting the impact of missense mutations on protein stability. PLOS Computational Biology, 16(12), e1008543. https://doi.org/10.1371/journal.pcbi.1008543
  • de Vries, M., Mohamed, A. S., Prescott, R. A., Valero-Jimenez, A. M., Desvignes, L., O’Connor, R., Steppan, C., Anderson, A. S., Binder, J., & Dittmann, M. (2021). A comparative analysis of SARS-CoV-2 antivirals characterizes 3CLpro inhibitor PF-00835231 as a potential new treatment for COVID-19. Journal of Virology, 95(10), 10-1128. https://doi.org/10.1128/jvi.01819-20
  • Dearden, A. K., Callahan, B., Van Roey, P., Li, Z., Kumar, U., Belfort, M., & Nayak, S. K. (2013). A conserved threonine spring-loads precursor for intein splicing. Protein Science, 22(5), 557–563. https://doi.org/10.1002/pro.2236
  • Dehury, B., Sahu, M., Sahu, J., Sarma, K., Sen, P., Modi, M. K., Barooah, M., & Choudhury, M. D. (2013). Structural analysis and molecular dynamics simulations of novel δ-endotoxin Cry1Id from Bacillus thuringiensis to pave the way for development of novel fusion proteins against insect pests of crops. Journal of Molecular Modeling, 19(12), 5301–5316. https://doi.org/10.1007/s00894-013-2010-x
  • Dehury, B., Tang, N., Blundell, T. L., & Kepp, K. P. (2019). Structure and dynamics of γ-secretase with presenilin 2 compared to presenilin 1. RSC Advances, 9(36), 20901–20916. https://doi.org/10.1039/c9ra02623a
  • Dimopoulos, G., Almyroudi, M. P., Myrianthefs, P., & Rello, J. (2021). COVID-19-associated pulmonary aspergillosis (CAPA). Journal of Intensive Medicine, 1(2), 71–80. https://doi.org/10.1016/j.jointm.2021.07.001
  • Eryilma, E., Shah, N. H., Muir, T. W., & Cowburn, D. (2014). Structural and dynamical features of inteins and implications on protein splicing. The Journal of Biological Chemistry, 289(21), 14506–14511. https://doi.org/10.1074/jbc.R113.540302
  • Evans, T. C., & Xu, M. Q. (2002). Mechanistic and kinetic considerations of protein splicing. Chemical Reviews, 102(12), 4869–4884. https://doi.org/10.1021/cr9601369
  • Eweas, A. F., Alhossary, A. A., & Abdel-Moneim, A. S. (2020). Molecular docking reveals Ivermectin and Remdesivir as potential repurposed drugs against SARS-CoV-2. Frontiers in Microbiology, 11, 592908. https://doi.org/10.3389/fmicb.2020.592908
  • Fajar, J., Kenji, R., Yusup, M., & Sahlan, M. (2020). Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company ’ s public news and information. January.
  • Filgueira, W. A. Jr. (n.d.). Docking screens for drug discovery.
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Galej, W. P., Oubridge, C., Newman, A. J., & Nagai, K. (2013). Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature, 493(7434), 638–643. https://doi.org/10.1038/nature11843
  • Galiceanu, M., Reis, A. S., & Dolgushev, M. (2014). Dynamics of semiflexible scale-free polymer networks. The Journal of Chemical Physics, 141(14), 144902. https://doi.org/10.1063/1.4897563
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461.
  • Green, C. M., Li, Z., Novikova, O., Bacot-Davis, V. R., Banavali, N. K., Li, H., & Belfort, M. (2019). Spliceosomal Prp8 intein at the crossroads of protein and RNA splicing.PLoS Biology, 17(10), e3000104-e3000104. https://doi.org/10.1371/journal.pbio.3000104
  • Hoenigl, M., Seidel, D., Sprute, R., Cunha, C., Oliverio, M., Goldman, G. H., Ibrahim, A. S., & Carvalho, A. (2022). COVID-19-associated fungal infections. Nature Microbiology, 7(8), 1127–1140. https://doi.org/10.1038/s41564-022-01172-2
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review. A, General Physics, 31(3), 1695–1697. https://doi.org/10.1103/PhysRevA.31.1695
  • Huang, J., & Mackerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Jawarkar, R. D., Bakal, R. L., Zaki, M. E. A., Al-Hussain, S., Ghosh, A., Gandhi, A., Mukerjee, N., Samad, A., Masand, V. H., & Lewaa, I. (2022). QSAR based virtual screening derived identification of a novel hit as a SARS CoV-229E 3CLpro Inhibitor: GA-MLR QSAR modeling supported by molecular Docking, molecular dynamics simulation and MMGBSA calculation approaches. Arabian Journal of Chemistry, 15(1), 103499. https://doi.org/10.1016/j.arabjc.2021.103499
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kanafani, Z. A., & Perfect, J. R. (2008). Resistance to antifungal agents: Mechanisms and clinical impact. Clinical Infectious Diseases, 46(1), 120–128. https://doi.org/10.1086/524071
  • Kaul, R., Paul, P., Kumar, S., Büsselberg, D., Dwivedi, V. D., & Chaari, A. (2021). Promising antiviral activities of natural flavonoids against SARS-CoV-2 targets: Systematic review. International Journal of Molecular Sciences, 22(20), 11069. https://doi.org/10.3390/ijms222011069
  • Kelley, D. S., Lennon, C. W., Li, Z., Miller, M. R., Banavali, N. K., Li, H., & Belfort, M. (2018). Mycobacterial DnaB helicase intein as oxidative stress sensor. Nature Communications, 9(1), 1-15. https://doi.org/10.1038/s41467-018-06554-x
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Kumari, R., Kumar, R., & Lynn, A. (2014). G-mmpbsa–A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lai, B., & Oostenbrink, C. (2012). Binding free energy, energy and entropy calculations using simple model systems. Theoretical Chemistry Accounts, 131(10), 1–13. https://doi.org/10.1007/s00214-012-1272-1
  • Lai, M. C. (2007). Coronaviridae. Fields virology, 1305–1318.
  • Lennon, C. W., Stanger, M., & Belfort, M. (2016). Protein splicing of a recombinase intein induced by ssDNA and DNA damage. Genes & Development, 30(24), 2663–2668. https://doi.org/10.1101/gad.289280.116
  • Li, Z., Fu, B., Green, C. M., Liu, B., Zhang, J., Lang, Y., Chaturvedi, S., Belfort, M., Liao, G., & Li, H. (2019). Cisplatin protects mice from challenge of Cryptococcus neoformans by targeting the Prp8 intein. Emerging Microbes & Infections, 8(1), 895–908. https://doi.org/10.1080/22221751.2019.1625727
  • Li, Z., Tharappel, A. M., Xu, J., Lang, Y., Green, C. M., Zhang, J., Lin, Q., Chaturvedi, S., Zhou, J., Belfort, M., & Li, H. (2021). Small-molecule inhibitors for the Prp8 intein as antifungal agents. Proceedings of the National Academy of Sciences of the United States of America, 118(2), 1–10. https://doi.org/10.1073/pnas.2008815118
  • Liu, X. Q., & Yang, J. (2004). Prp8 intein in fungal pathogens: Target for potential antifungal drugs. FEBS Letters, 572(1–3), 46–50. https://doi.org/10.1016/j.febslet.2004.07.016
  • Liu, Z., Frutos, S., Bick, M. J., Vila-Perelló, M., Debelouchina, G. T., Darst, S. A., & Muir, T. W. (2014). Structure of the branched intermediate in protein splicing. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 8422–8427. https://doi.org/10.1073/pnas.1402942111
  • Lu, C., Wu, C., Ghoreishi, D., Chen, W., Wang, L., Damm, W., Ross, G. A., Dahlgren, M. K., Russell, E., Von Bargen, C. D., Abel, R., Friesner, R. A., & Harder, E. D. (2021). OPLS4: Improving force field accuracy on challenging regimes of chemical space. Journal of Chemical Theory and Computation, 17(7), 4291–4300. https://doi.org/10.1021/acs.jctc.1c00302
  • Luthy, R., Bowei, J., & Einsenberg, D. (1997). Verify3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404.
  • Macip, G., Garcia-Segura, P., Mestres-Truyol, J., Saldivar-Espinoza, B., & Pujadas, G. (2022). A review of the current landscape of SARS-CoV-2 main protease inhibitors: Have we hit the bullseye yet?
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Marsh, C. J., Gavish, Y., Kuemmerlen, M., Stoll, S., Haase, P., & Kunin, W. E. (2023). SDM profiling: A tool for assessing the information-content of sampled and unsampled locations for species distribution models. Ecological Modelling, 475, 110170. https://doi.org/10.1016/j.ecolmodel.2022.110170
  • Mereghetti, P., Ganadu, M., Papaleo, E., Fantucci, P., & De Gioia, L. (2008). Validation of protein models by a neural network approach. BMC Bioinformatics, 9(1), 66. https://doi.org/10.1186/1471-2105-9-66
  • Mills, K. V., Johnson, M. A., & Perler, F. B. (2014). Protein splicing: How inteins escape from precursor proteins. The Journal of Biological Chemistry, 289(21), 14498–14505. https://doi.org/10.1074/jbc.R113.540310
  • Mills, K., & Perler, F. (2005). The mechanism of intein-mediated protein splicing: Variations on a theme. Protein and Peptide Letters, 12(8), 751–755. https://doi.org/10.2174/0929866054864337
  • Mothay, D., & Ramesh, K. V. (2020). Binding site analysis of potential protease inhibitors of COVID-19 using AutoDock. Virusdisease, 31(2), 194–199. https://doi.org/10.1007/s13337-020-00585-z
  • Mujika, J. I., & Mulholland, A. J. (2012). Mechanism of C-terminal intein cleavage in protein splicing from QM/MM molecular dynamics simulations. Organic & Biomolecular Chemistry, 10(6), 1207–1218. https://doi.org/10.1039/c1ob06444d
  • Muzafar, S., Sharma, R. D., Chauhan, N., & Prasad, R. (2021). Intron distribution and emerging role of alternative splicing in fungi. FEMS Microbiology Letters, 368(19), 1–12. https://doi.org/10.1093/femsle/fnab135
  • Nichols, N. M., Benner, J. S., Martin, D. D., & Evans, T. C. (2003). Zinc ion effects on individual Ssp DnaE intein splicing steps: Regulating pathway progression. Biochemistry, 42, 5301–5311. https://doi.org/10.1021/bi020679e
  • Nosé, S. (2002). A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 100(1), 191–198. https://doi.org/10.1080/00268970110089108
  • Owusu, S. K. (2022). Invasive fungal infections. African Journal of Thoracic and Critical Care Medicine, 28(3), 100–101. https://doi.org/10.7196/AJTCCM.2022.v28i3.264
  • Panda, S., Nanda, A., Nasker, S. S., Mehra, A., Ojha, D. K., Mohanty, P. S., & Nayak, S. (2023). Metal regulation of Mycobacterium tuberculosis SufB intein splicing at the host-pathogen crossroad. Clinical Science, 137(14), 1027–1048. https://doi.org/10.1042/CS20230307
  • Panda, S., Nanda, A., Nasker, S. S., Sen, D., Mehra, A., & Nayak, S. (2021). Metal effect on intein splicing: A review. Biochimie, 185, 53–67. https://doi.org/10.1016/j.biochi.2021.03.006
  • Pandurangan, A. P., Ochoa-Montaño, B., Ascher, D. B., & Blundell, T. L. (2017). SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Research, 45(W1), W229–W235. https://doi.org/10.1093/nar/gkx439
  • Papers, J. B. C., & Doi, R. (2014). Protein splicing: How inteins escape from precursor proteins. Journal of Biological Chemistry, 289(21), 14498–14505. https://doi.org/10.1074/jbc.R113.540310
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Partnership, I., Lennon, C. W., Stanger, M., & Banavali, N. K. (2018). crossm Conditional protein splicing switch in hyperthermophiles (pp. 1–12).
  • Paulus, H. (1998). The chemical basis of protein splicing. Chemical Society Reviews, 27(6), 375–386. [Mismatch] https://doi.org/10.1039/a827375z
  • Pearl, E. J., Tyndall, J. D. A., Poulter, R. T. M., & Wilbanks, S. M. (2007). Sequence requirements for splicing by the Cne PRP8 intein. FEBS Letters, 581(16), 3000–3004. https://doi.org/10.1016/j.febslet.2007.05.060
  • Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014). MCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics, 30(3), 335–342. https://doi.org/10.1093/bioinformatics/btt691
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2016). MCSM-lig: Quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance. Scientific Reports, 6(1), 29575. https://doi.org/10.1038/srep29575
  • Radoshitzky, S. R., Iversen, P., Lu, X., Zou, J., Kaptein, S. J. F., Stuthman, K. S., Van Tongeren, S. A., Steffens, J., Gong, R., Truong, H., Sapre, A. A., Yang, H., Xie, X., Chia, J. J., Song, Z. J., Leventhal, S. M., Chan, J., Shornikov, A., Zhang, X., … Feng, J. Y. (2023). Expanded profiling of Remdesivir as a broad-spectrum antiviral and low potential for interaction with other medications in vitro. Scientific Reports, 13(1), 3131. https://doi.org/10.1038/s41598-023-29517-9
  • Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7(1), 95–99. https://doi.org/10.1016/S0022-2836(63)80023-6
  • Reddy, G. K. K., Padmavathi, A. R., & Nancharaiah, Y. V. (2022). Fungal infections: Pathogenesis, antifungals and alternate treatment approaches. Current Research in Microbial Sciences, 3, 100137. https://doi.org/10.1016/j.crmicr.2022.100137
  • Rout, M., Mishra, S., Dey, S., Singh, M. K., Dehury, B., & Pati, S. (2023). Exploiting the potential of natural polyphenols as antivirals against monkeypox envelope protein F13 using machine learning and all-atoms MD simulations. Computers in Biology and Medicine, 162, 107116. https://doi.org/10.1016/j.compbiomed.2023.107116
  • Sahoo, C. R., Paidesetty, S. K., Dehury, B., & Padhy, R. N. (2020). Molecular dynamics and computational study of Mannich-based coumarin derivatives: Potent tyrosine kinase inhibitor. Journal of Biomolecular Structure & Dynamics, 38(18), 5419–5428. https://doi.org/10.1080/07391102.2019.1701554
  • Scott, A. H., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pKa prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Shemella, P. T., Topilina, N. I., Soga, I., Pereira, B., Belfort, G., Belfort, M., & Nayak, S. K. (2011). Electronic structure of neighboring extein residue modulates intein C-terminal cleavage activity. Biophysical Journal, 100(9), 2217–2225. https://doi.org/10.1016/j.bpj.2011.02.037
  • Singh, A. K., Kushwaha, P. P., Prajapati, K. S., Shuaib, M., Gupta, S., & Kumar, S. (2021). Identification of FDA approved drugs and nucleoside analogues as potential SARS-CoV-2 A1pp domain inhibitor: An in silico study. Computers in Biology and Medicine, 130, 104185. https://doi.org/10.1016/j.compbiomed.2020.104185
  • Tharappel, A. M., Li, Z., & Li, H. (2022). Inteins as drug targets and therapeutic tools. Frontiers in Molecular Biosciences, 9, 821146. https://doi.org/10.3389/fmolb.2022.821146
  • Topilina, N. I., Green, C. M., Jayachandran, P., Kelley, D. S., Stanger, M. J., Piazza, C. L., Nayak, S., & Belfort, M. (2015). SufB intein of Mycobacterium tuberculosis as a sensor for oxidative and nitrosative stresses. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 10348–10353. https://doi.org/10.1073/pnas.1512777112
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vanommeslaeghe, K., & MacKerell, A. D. (2012). Automation of the CHARMM general force field (CGenFF) I: Bond perception and atom typing. Journal of Chemical Information and Modeling, 52(12), 3144–3154. https://doi.org/10.1021/ci300363c
  • Werner, E., Wende, W., Pingoud, A., & Heinemann, U. (2002). High resolution crystal structure of domain I of the Saccharomyces cerevisiae homing endonuclease PI-Scel. Nucleic Acids Research, 30(18), 3962–3971. https://doi.org/10.1093/nar/gkf523
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Zhang, L., Xiao, N., Pan, Y., Zheng, Y., Pan, Z., Luo, Z., Xu, X., & Liu, Y. (2010). Binding and inhibition of copper ions to RecA inteins from Mycobacterium tuberculosis. Chemistry, 16(14), 4297–4306. https://doi.org/10.1002/chem.200903584
  • Zhang, L., Zheng, Y., Callahan, B., Belfort, M., & Liu, Y. (2011). Cisplatin inhibits protein splicing, suggesting inteins as therapeutic targets in mycobacteria. The Journal of Biological Chemistry, 286(2), 1277–1282. https://doi.org/10.1074/jbc.M110.171124

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.