127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Apigenin exerts anti-cancer effects in colon cancer by targeting HSP90AA1

, , & ORCID Icon
Received 29 Aug 2023, Accepted 18 Dec 2023, Published online: 29 Dec 2023

References

  • Abbasi, M., Sadeghi-Aliabadi, H., & Amanlou, M. (2017). Prediction of new Hsp90 inhibitors based on 3,4-isoxazolediamide scaffold using QSAR study, molecular docking and molecular dynamic simulation. DARU Journal of Pharmaceutical Sciences, 25(1), 17. https://doi.org/10.1186/s40199-017-0182-0
  • Bartha, Á., & Győrffy, B. (2021). TNMplot.com: A web tool for the comparison of gene expression in normal, tumor and metastatic tissues. International Journal of Molecular Sciences, 22(5), 2622. https://doi.org/10.3390/ijms22052622
  • Bhandari, A., Woodhouse, M., & Gupta, S. (2017). Colorectal cancer is a leading cause of cancer incidence and mortality among adults younger than 50 years in the USA: A seer-based analysis with comparison to other young-onset cancers. Journal of Investigative Medicine, 65(2), 311–315. https://doi.org/10.1136/jim-2016-000229
  • Cai, L., Qin, X., Xu, Z., Song, Y., Jiang, H., Wu, Y., Ruan, H., & Chen, J. (2019). Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 method. ACS Omega, 4(7), 12036–12042. https://doi.org/10.1021/acsomega.9b01142
  • Chen, F., Chandrashekar, D. S., Varambally, S., & Creighton, C. J. (2019). Pan-cancer molecular subtypes revealed by mass-spectrometry-based proteomic characterization of more than 500 human cancers. Nature Communications, 10(1), 5679. https://doi.org/10.1038/s41467-019-13528-0
  • Chen, X., Xu, H., Yu, X., Wang, X., Zhu, X., & Xu, X. (2019). Apigenin inhibits in vitro and in vivo tumorigenesis in cisplatin-resistant colon cancer cells by inducing autophagy, programmed cell death and targeting m-TOR/PI3K/Akt signalling pathway. Journal of the Balkan Union of Oncology, 24(2), 488–493.
  • Choi, S.-H., Aid, S., & Bosetti, F. (2009). The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: Implications for translational research. Trends in Pharmacological Sciences, 30(4), 174–181. https://doi.org/10.1016/j.tips.2009.01.002
  • Chunhua, L., Donglan, L., Xiuqiong, F., Lihua, Z., Qin, F., Yawei, L., Liang, Z., Ge, W., Linlin, J., Ping, Z., Kun, L., & Xuegang, S. (2013). Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. The Journal of Nutritional Biochemistry, 24(10), 1766–1775. https://doi.org/10.1016/j.jnutbio.2013.03.006
  • Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
  • DeRango-Adem, E. F., & Blay, J. (2021). Does oral apigenin have real potential for a therapeutic effect in the context of human gastrointestinal and other cancers? Frontiers in Pharmacology, 12, 681477. https://doi.org/10.3389/fphar.2021.681477
  • Franken, N. A. P., Rodermond, H. M., Stap, J., Haveman, J., & Van Bree, C. (2006). Clonogenic assay of cells in vitro. Nature Protocols, 1(5), 2315–2319. https://doi.org/10.1038/nprot.2006.339
  • Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., Cerami, E., Sander, C., & Schultz, N. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6(269), pl1. https://doi.org/10.1126/scisignal.2004088
  • Ge, S. X., Jung, D., & Yao, R. (2020). ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics (Oxford, England), 36(8), 2628–2629. https://doi.org/10.1093/bioinformatics/btz931
  • Ghițu, A., Schwiebs, A., Radeke, H. H., Avram, S., Zupko, I., Bor, A., Pavel, I. Z., Dehelean, C. A., Oprean, C., Bojin, F., Farcas, C., Soica, C., Duicu, O., & Danciu, C. (2019). A comprehensive assessment of apigenin as an antiproliferative, proapoptotic, antiangiogenic and immunomodulatory phytocompound. Nutrients, 11(4), 858. https://doi.org/10.3390/nu11040858
  • Gradolatto, A., Canivenc-Lavier, M.-C., Basly, J.-P., Siess, M.-H., & Teyssier, C. (2004). Metabolism of Apigenin by rat liver phase I and phase II enzymes and by isolated perfused rat liver. Drug Metabolism and Disposition, 32(1), 58–65. https://doi.org/10.1124/dmd.32.1.58
  • Hart, K., Foloppe, N., Baker, C. M., Denning, E. J., Nilsson, L., & Mackerell, A. D. (2012). Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. Journal of Chemical Theory and Computation, 8(1), 348–362. https://doi.org/10.1021/ct200723y
  • Imran, M., Aslam Gondal, T., Atif, M., Shahbaz, M., Batool Qaisarani, T., Hanif Mughal, M., Salehi, B., Martorell, M., & Sharifi-Rad, J. (2020). Apigenin as an anticancer agent. Phytotherapy Research: PTR, 34(8), 1812–1828. https://doi.org/10.1002/ptr.6647
  • Javed, Z., Sadia, H., Iqbal, M. J., Shamas, S., Malik, K., Ahmed, R., Raza, S., Butnariu, M., Cruz-Martins, N., & Sharifi-Rad, J. (2021). Apigenin role as cell-signaling pathways modulator: Implications in cancer prevention and treatment. Cancer Cell International, 21(1), 189. https://doi.org/10.1186/s12935-021-01888-x
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Liu, K., Liu, P. C., Liu, R., & Wu, X. (2015). Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Medical Science Monitor Basic Research, 21, 15–20. PMID: 25664686; PMCID: PMC4332266. https://doi.org/10.12659/MSMBR.893327
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods (San Diego, Calif.), 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
  • Mizuno, H., Kitada, K., Nakai, K., & Sarai, A. (2009). PrognoScan: A new database for meta-analysis of the prognostic value of genes. BMC Medical Genomics, 2(1), 18. https://doi.org/10.1186/1755-8794-2-18
  • Naskar, D., Maiti, G., Chakraborty, A., Roy, A., Chattopadhyay, D., & Sen, M. (2014). Wnt5a–Rac1–NF-κB homeostatic circuitry sustains innate immune functions in macrophages. Journal of Immunology (Baltimore, Md.: 1950), 192(9), 4386–4397. https://doi.org/10.4049/jimmunol.1302817
  • Oniga, S. D., Pacureanu, L., Stoica, C. I., Palage, M. D., Crăciun, A., Rusu, L. R., Crisan, E.-L., & Araniciu, C. (2017). COX inhibition profile and molecular docking studies of some 2-(Trimethoxyphenyl)-thiazoles. Molecules (Basel, Switzerland), 22(9), 1507. https://doi.org/10.3390/molecules22091507
  • Oruç, Z., & Kaplan, M. A. (2019). Effect of exercise on colorectal cancer prevention and treatment. World Journal of Gastrointestinal Oncology, 11(5), 348–366. https://doi.org/10.4251/wjgo.v11.i5.348
  • Pearl, L. H. (2016). Review: The HSP90 molecular chaperone—an enigmatic ATPase. Biopolymers, 105(8), 594–607. https://doi.org/10.1002/bip.22835
  • Petre-Mandache, C. B., & Margaritescu, D. N. (2021). Risk factors and genetic predisposition in colorectal cancer: A study on young and old adults. Current Health Sciences Journal, 47(1), 84–88. https://doi.org/10.12865/CHSJ.47.01.13
  • Rawla, P., Sunkara, T., & Barsouk, A. (2019). Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Przeglad Gastroenterologiczny, 14(2), 89–103. https://doi.org/10.5114/pg.2018.81072
  • Ren, C., Li, M., Du, W., Lü, J., Zheng, Y., Xu, H., & Quan, R. (2020). Comprehensive bioinformatics analysis reveals hub genes and inflammation state of rheumatoid arthritis. BioMed Research International, 2020, 6943103. https://doi.org/10.1155/2020/6943103
  • Shankar, E., Kanwal, R., Candamo, M., & Gupta, S. (2016). Dietary phytochemicals as epigenetic modifiers in cancer: Promise and challenges. Seminars in Cancer Biology, 40-41, 82–99. https://doi.org/10.1016/j.semcancer.2016.04.002
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Colorectal cancer mortality rates in adults aged 20 to 54 years in the United States, 1970-2014. JAMA, 318(6), 572–574. https://doi.org/10.1001/jama.2017.7630
  • Sung, B., Chung, H. Y., & Kim, N. D. (2016). Role of Apigenin in cancer prevention via the induction of apoptosis and autophagy. Journal of Cancer Prevention, 21(4), 216–226. https://doi.org/10.15430/JCP.2016.21.4.216
  • Szczuka, I., Wierzbicki, J., Serek, P., Szczęśniak-Sięga, B. M., & Krzystek-Korpacka, M. (2021). Heat shock proteins HSPA1 and HSP90AA1 are upregulated in colorectal polyps and can be targeted in cancer cells by anti-inflammatory oxicams with arylpiperazine pharmacophore and benzoyl moiety substitutions at thiazine ring. Biomolecules, 11(11), 1588. https://doi.org/10.3390/biom11111588
  • Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–D612. https://doi.org/10.1093/nar/gkaa1074
  • Tong, J., Shen, Y., Zhang, Z., Hu, Y., Zhang, X., & Han, L. (2019). Apigenin inhibits epithelial-mesenchymal transition of human colon cancer cells through NF-κB/Snail signaling pathway. Bioscience Reports, 39(5), BSR20190452. https://doi.org/10.1042/BSR20190452
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Van Tonder, A., Joubert, A. M., & Cromarty, A. D. (2015). Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Research Notes, 8(1), 47. https://doi.org/10.1186/s13104-015-1000-8
  • Wang, X., Shen, Y., Wang, S., Li, S., Zhang, W., Liu, X., Lai, L., Pei, J., & Li, H. (2017). PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Research, 45(W1), W356–W360. https://doi.org/10.1093/nar/gkx374
  • Xie, Y.-H., Chen, Y.-X., & Fang, J.-Y. (2020). Comprehensive review of targeted therapy for colorectal cancer. Signal Transduction and Targeted Therapy, 5(1), 22. https://doi.org/10.1038/s41392-020-0116-z
  • Xu, M., Wang, S., Song, Y. U., Yao, J., Huang, K., & Zhu, X. (2016). Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway. Oncology Letters, 11(5), 3075–3080. https://doi.org/10.3892/ol.2016.4331
  • Yan, X., Qi, M., Li, P., Zhan, Y., & Shao, H. (2017). Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell & Bioscience, 7(1), 50. https://doi.org/10.1186/s13578-017-0179-x
  • Zarghi, A., & Arfaei, S. (2011). Selective COX-2 inhibitors: A review of their structure-activity relationships. Iranian Journal of Pharmaceutical Research: IJPR, 10(4), 655–683.
  • Zhao, Y., Hu, X., Zuo, X., & Wang, M. (2018). Chemopreventive effects of some popular phytochemicals on human colon cancer: A review. Food & Function, 9(9), 4548–4568. https://doi.org/10.1039/C8FO00850G

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.