206
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular docking, molecular dynamics simulation, and MM/PBSA analysis of ginger phytocompounds as a potential inhibitor of AcrB for treating multidrug-resistant Klebsiella pneumoniae infections

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 17 Aug 2023, Accepted 20 Dec 2023, Published online: 02 Jan 2024

Reference

  • Akintobi, O., Onoh, C., Ogele, J., Idowu, A., Ojo, O., & Okonko, I. (2013). Antimicrobial activity of Zingiber officinale (ginger) extract against some selected pathogenic bacteria. Nature and Science, 11(1), 7–15.
  • Akullo, J. O., Kiage, B., Nakimbugwe, D., & Kinyuru, J. (2022). Effect of aqueous and organic solvent extraction on in-vitro antimicrobial activity of two varieties of fresh ginger (Zingiber officinale) and garlic (Allium sativum). Heliyon, 8(9), e10457. https://doi.org/10.1016/j.heliyon.2022.e10457
  • Aparna, V., Dineshkumar, K., Mohanalakshmi, N., Velmurugan, D., & Hopper, W. (2014). Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PloS One, 9(7), e101840. https://doi.org/10.1371/journal.pone.0101840
  • Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., Millán, C., Park, H., Adams, C., Glassman, C. R., DeGiovanni, A., Pereira, J. H., Rodrigues, A. V., van Dijk, A. A., Ebrecht, A. C., … Baker, D. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science (New York, N.Y.), 373(6557), 871–876. https://doi.org/10.1126/science.abj8754
  • Ballén, V., Gabasa, Y., Ratia, C., Ortega, R., Tejero, M., & Soto, S. (2021). Antibiotic resistance and virulence profiles of Klebsiella pneumoniae strains isolated from different clinical sources. Frontiers in Cellular and Infection Microbiology, 11, 738223. https://doi.org/10.3389/fcimb.2021.738223
  • Barbieri, R., Coppo, E., Marchese, A., Daglia, M., Sobarzo-Sánchez, E., Nabavi, S. F., & Nabavi, S. M. (2017). Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiological Research, 196, 44–68. https://doi.org/10.1016/j.micres.2016.12.003
  • Behera, D. U., Gaur, M., Sahoo, M., Subudhi, E., & Subudhi, B. B. (2024). Development of pharmacophore models for AcrB protein and the identification of potential adjuvant candidates for overcoming efflux-mediated colistin resistance. RSC Medicinal Chemistry, https://doi.org/10.1039/D3MD00483J
  • Dey, S., Gaur, M., Sahoo, R. K., Das, A., Jain, B., Pati, S., & Subudhi, E. (2020). Genomic characterization of XDR Klebsiella pneumoniae ST147 co-resistant to carbapenem and colistin—The first report in India. Journal of Global Antimicrobial Resistance, 22, 54–56. https://doi.org/10.1016/j.jgar.2020.05.005
  • Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, 25–64. https://doi.org/10.4137/PMC.S14459
  • Filimonov, D. A., Rudik, A. V., Dmitriev, A. V., & Poroikov, V. V. (2020). Computer-aided estimation of biological activity profiles of drug-like compounds taking into account their metabolism in human body. International Journal of Molecular Sciences, 21(20), 7492. https://doi.org/10.3390/ijms21207492
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Ghafoor, K., Al Juhaimi, F., Özcan, M. M., Uslu, N., Babiker, E. E., & Mohamed Ahmed, I. A. (2020). Total phenolics, total carotenoids, individual phenolics and antioxidant activity of ginger (Zingiber officinale) rhizome as affected by drying methods. LWT, 126, 109354. https://doi.org/10.1016/j.lwt.2020.109354
  • Huang, N., Kalyanaraman, C., Irwin, J. J., & Jacobson, M. P. (2006). Physics-based scoring of protein − ligand complexes: Enrichment of known inhibitors in large-scale virtual screening. Journal of Chemical Information and Modeling, 46(1), 243–253. https://doi.org/10.1021/ci0502855
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Jain, N., Sk, M. F., Mishra, A., Kar, P., & Kumar, A. (2022). Identification of novel efflux pump inhibitors for Neisseria gonorrhoeae via multiple ligand-based pharmacophores, e-pharmacophore, molecular docking, density functional theory, and molecular dynamics approaches. Computational Biology and Chemistry, 98, 107682. https://doi.org/10.1016/j.compbiolchem.2022.107682
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. https://doi.org/10.1021/jp003919d
  • Kar, B., Dehury, B., Singh, M. K., Pati, S., & Bhattacharya, D. (2022). Identification of phytocompounds as newer antiviral drugs against COVID-19 through molecular docking and simulation based study. Journal of Molecular Graphics & Modelling, 114, 108192. https://doi.org/10.1016/j.jmgm.2022.108192
  • Kobylka, J., Kuth, M. S., Müller, R. T., Geertsma, E. R., & Pos, K. M. (2020). AcrB: A mean, keen, drug efflux machine. Annals of the New York Academy of Sciences, 1459(1), 38–68. https://doi.org/10.1111/nyas.14239
  • Kuhn, B., & Kollman, P. A. (2000). Binding of a diverse set of ligands to avidin and streptavidin: An accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. Journal of Medicinal Chemistry, 43(20), 3786–3791. https://doi.org/10.1021/jm000241h
  • Li, Y., Cross, T. S., & Dörr, T. (2022). Analysis of AcrB in Klebsiella pneumoniae reveals natural variants promoting enhanced multidrug resistance. Research in Microbiology, 173(3), 103901. https://doi.org/10.1016/j.resmic.2021.103901
  • Lokhande, K. B., Ballav, S., Thosar, N., Swamy, K. V., & Basu, S. (2020). Exploring conformational changes of PPAR-Ɣ complexed with novel kaempferol, quercetin, and resveratrol derivatives to understand binding mode assessment: A small-molecule checkmate to cancer therapy. Journal of Molecular Modeling, 26(9), 242. https://doi.org/10.1007/s00894-020-04488-0
  • Lokhande, K. B., Pawar, S. V., Madkaiker, S., Nawani, N., Venkateswara, S. K., & Ghosh, P. (2023). High throughput virtual screening and molecular dynamics simulation analysis of phytomolecules against BfmR of Acinetobacter baumannii: Anti-virulent drug development campaign. Journal of Biomolecular Structure & Dynamics, 41(7), 2698–2712. https://doi.org/10.1080/07391102.2022.2038271
  • Macalalad, M. A. B., & Gonzales, A. A. (2022). In-silico screening and identification of phytochemicals from Centella asiatica as potential inhibitors of sodium-glucose co-transporter 2 for treating diabetes. Journal of Biomolecular Structure & Dynamics, 40(22), 12221–12238. https://doi.org/10.1080/07391102.2021.1969282
  • Manasa, B., Manandhar, S., Hari, G., Priya, K., Kumar B, H., & Pai, K. S. R. (2021). Virtual structure-based docking, WaterMap, and molecular dynamics guided identification of the potential natural compounds as inhibitors of protein-tyrosine phosphatase 1B. Journal of Molecular Structure, 1226, 129396. https://doi.org/10.1016/j.molstruc.2020.129396
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Miller, E. B., Murphy, R. B., Sindhikara, D., Borrelli, K. W., Grisewood, M. J., Ranalli, F., Dixon, S. L., Jerome, S., Boyles, N. A., Day, T., Ghanakota, P., Mondal, S., Rafi, S. B., Troast, D. M., Abel, R., & Friesner, R. A. (2021). Reliable and accurate solution to the induced fit docking problem for protein–ligand binding. Journal of Chemical Theory and Computation, 17(4), 2630–2639. https://doi.org/10.1021/acs.jctc.1c00136
  • Mirza, S. B., Salmas, R. E., Fatmi, M. Q., & Durdagi, S. (2016). Virtual screening of eighteen million compounds against dengue virus: Combined molecular docking and molecular dynamics simulations study. Journal of Molecular Graphics & Modelling, 66, 99–107. https://doi.org/10.1016/j.jmgm.2016.03.008
  • Nada, H., Lee, K., Gotina, L., Pae, A. N., & Elkamhawy, A. (2022). Identification of novel discoidin domain receptor 1 (DDR1) inhibitors using E-pharmacophore modeling, structure-based virtual screening, molecular dynamics simulation and MM-GBSA approaches. Computers in Biology and Medicine, 142, 105217. https://doi.org/10.1016/j.compbiomed.2022.105217
  • Ni, R. T., Onishi, M., Mizusawa, M., Kitagawa, R., Kishino, T., Matsubara, F., Tsuchiya, T., Kuroda, T., & Ogawa, W. (2020). The role of RND-type efflux pumps in multidrug-resistant mutants of Klebsiella pneumoniae. Scientific Reports, 10(1), 10876. https://doi.org/10.1038/s41598-020-67820-x
  • Obied, H. N., Al-Zobaidy, M. A. H., & Hindi, N. K. K. (2018). An in vitro study of anti-bacterial, anti-adherence, anti-biofilm and anti-motility activities of the aqueous extracts of fresh and powdered onion (Allium cepa) and onion oil. Journal of Pharmaceutical Sciences and Research, 10(6), 1573–1578.
  • Pacios, O., Fernández-García, L., Bleriot, I., Blasco, L., Ambroa, A., López, M., Ortiz-Cartagena, C., González de Aledo, M., Fernández-Cuenca, F., Oteo-Iglesias, J., Pascual, Á., Martínez-Martínez, L., & Tomás, M. (2022). Adaptation of clinical isolates of Klebsiella pneumoniae to the combination of niclosamide with the efflux pump inhibitor phenyl-arginine-β-naphthylamide (PaβN): Co-resistance to antimicrobials. The Journal of Antimicrobial Chemotherapy, 77(5), 1272–1281. https://doi.org/10.1093/jac/dkac044
  • Parihar, A., Ahmed, S. S., Sharma, P., Choudhary, N. K., Akter, F., Ali, M. A., Sonia, Z. F., & Khan, R. (2022). Plant-based bioactive molecules for targeting of endoribonuclease using steered molecular dynamic simulation approach: A highly conserved therapeutic target against variants of SARS-CoV-2. Molecular Simulation, 49(12), 1267–1279. https://doi.org/10.1080/08927022.2022.2113811
  • Park, M., Bae, J., & Lee, D. S. (2008). Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytotherapy Research: PTR, 22(11), 1446–1449. https://doi.org/10.1002/ptr.2473
  • Pattar, S. V., Adhoni, S. A., Kamanavalli, C. M., & Kumbar, S. S. (2020). In silico molecular docking studies and MM/GBSA analysis of coumarin-carbonodithioate hybrid derivatives divulge the anticancer potential against breast cancer. Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 36. https://doi.org/10.1186/s43088-020-00059-7
  • Petretto, E., Campomanes, P., & Vanni, S. (2023). Development of a coarse-grained model for surface-functionalized gold nanoparticles: Towards an accurate description of their aggregation behavior. Soft Matter, 19(18), 3290–3300. https://doi.org/10.1039/D3SM00094J
  • Pilz, T., Melzer, F., Dahlmann, R., & Hopmann, C. (2023). Calculation of the macroscopic mechanical properties of polyamide 6.6 underwater influence using molecular dynamics simulations, hyperelastic material modeling of the amorphous fraction, and homogenization schemes. Polymers for Advanced Technologies, 34(12), 3722–3734. https://doi.org/10.1002/pat.6172
  • Pos, K. M. (2009). Drug transport mechanism of the AcrB efflux pump. Biochimica et Biophysica Acta, 1794(5), 782–793. https://doi.org/10.1016/j.bbapap.2008.12.015
  • Raj, D. S., Kottaisamy, C. P. D., Hopper, W., & Sankaran, U. (2021). Identification of immucillin analogue natural compounds to inhibit Helicobacter pylori MTAN through high throughput virtual screening and molecular dynamics simulation. In Silico Pharmacology, 9(1), 22. https://doi.org/10.1007/s40203-021-00081-2
  • Rathinavel, T., Palanisamy, M., Palanisamy, S., Subramanian, A., & Thangaswamy, S. (2020). Phytochemical 6-gingerol—A promising drug of choice for COVID-19. International Journal of Advanced Science and Engineering, 06(04), 1482–1489. https://doi.org/10.29294/IJASE.6.4.2020.1482-1489
  • Rout, M., Mishra, S., Dey, S., Singh, M. K., Dehury, B., & Pati, S. (2023). Exploiting the potential of natural polyphenols as antivirals against monkeypox envelope protein F13 using machine learning and all-atoms MD simulations. Computers in Biology and Medicine, 162, 107116. https://doi.org/10.1016/j.compbiomed.2023.107116
  • Sahoo, M., Dey, S., Sahoo, S., Das, A., Ray, A., Nayak, S., & Subudhi, E. (2023). MLP (multi-layer perceptron) and RBF (radial basis function) neural network approach for estimating and optimizing 6-gingerol content in Zingiber officinale Rosc. in different agro-climatic conditions. Industrial Crops and Products, 198, 116658. https://doi.org/10.1016/j.indcrop.2023.116658
  • Sahu, A., Gaur, M., Mahanandia, N. C., Subudhi, E., Swain, R. P., & Subudhi, B. B. (2023). Identification of core therapeutic targets for Monkeypox virus and repurposing potential of drugs against them: An in silico approach. Computers in Biology and Medicine, 161, 106971. https://doi.org/10.1016/j.compbiomed.2023.106971
  • Samadi, M., & Moshfegh, A. Z. (2022). Recent developments of electrospinning-based photocatalysts in degradation of organic pollutants: principles and strategies. ACS Omega, 7(50), 45867–45881. https://doi.org/10.1021/acsomega.2c05624
  • Samadi, M., Moradinazar, M., Khosravy, T., Soleimani, D., Jahangiri, P., & Kamari, N. (2022). A systematic review and meta-analysis of preclinical and clinical studies on the efficacy of ginger for the treatment of fatty liver disease. Phytotherapy Research: PTR, 36(3), 1182–1193. https://doi.org/10.1002/ptr.7390
  • Samreen, Qais, F. A., Ahmad, I. (2022). In silico screening and in vitro validation of phytocompounds as multidrug efflux pump inhibitor against E. coli. Journal of Biomolecular Structure & Dynamics, 6, 2189–2201, 41 https://doi.org/10.1080/07391102.2022.2029564
  • Shaheen, A., Afridi, W. A., Mahboob, S., Sana, M., Zeeshan, N., Ismat, F., Mirza, O., Iqbal, M., & Rahman, M. (2019). Reserpine is the new addition into the repertoire of AcrB efflux pump inhibitors. Molecular Biology, 53(4), 596–605. https://doi.org/10.1134/S0026893319040113
  • Sherman, W., Beard, H. S., & Farid, R. (2006a). Use of an induced fit receptor structure in virtual screening. Chemical Biology & Drug Design, 67(1), 83–84. https://doi.org/10.1111/j.1747-0285.2005.00327.x
  • Sherman, W., Day, T., Jacobson, M. P., Friesner, R. A., & Farid, R. (2006b). Novel procedure for modeling ligand/receptor induced fit effects. Journal of Medicinal Chemistry, 49(2), 534–553. https://doi.org/10.1021/jm050540c
  • Silva, L., Carrion, L. L., von Groll, A., Costa, S. S., Junqueira, E., Ramos, D. F., Cantos, J., Seus, V. R., Couto, I., Fernandes, L. D S., Bonacorso, H. G., Martins, M. A. P., Zanatta, N., Viveiros, M., Machado, K. S., & Almeida da Silva, P. E. (2017). In vitro and in silico analysis of the efficiency of tetrahydropyridines as drug efflux inhibitors in Escherichia coli. International Journal of Antimicrobial Agents, 49(3), 308–314. https://doi.org/10.1016/j.ijantimicag.2016.11.024
  • Silvester, R., Madhavan, A., Kokkat, A., Parolla, A., Adarsh, B. M., Harikrishnan, M., & Abdulla, M. H. (2022). Global surveillance of antimicrobial resistance and hypervirulence in Klebsiella pneumoniae from LMICs: An in-silico approach. The Science of the Total Environment, 802, 149859. https://doi.org/10.1016/j.scitotenv.2021.149859
  • Sirous, H., Campiani, G., Calderone, V., & Brogi, S. (2021). Discovery of novel hit compounds as potential HDAC1 inhibitors: The case of ligand- and structure-based virtual screening. Computers in Biology and Medicine, 137, 104808. https://doi.org/10.1016/j.compbiomed.2021.104808
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2009). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Verma, P., Maurya, P., Tiwari, M., & Tiwari, V. (2019). In-silico interaction studies suggest RND efflux pump mediates polymyxin resistance in Acinetobacter baumannii. Journal of Biomolecular Structure & Dynamics, 37(1), 95–103. https://doi.org/10.1080/07391102.2017.1418680
  • Vilar, S., Ferino, G., Phatak, S. S., Berk, B., Cavasotto, C. N., & Costanzi, S. (2011). Docking-based virtual screening for ligands of G protein-coupled receptors: Not only crystal structures but also in silico models. Journal of Molecular Graphics & Modelling, 29(5), 614–623. https://doi.org/10.1016/j.jmgm.2010.11.005
  • Wang, B., Li, R., Lu, Z., & Huang, Y. (2020). Does comorbidity increase the risk of patients with COVID-19: Evidence from meta-analysis. Aging, 12(7), 6049–6057. https://doi.org/10.18632/aging.103000
  • Zhang, Z., Morgan, C. E., Bonomo, R. A., & Yu, E. W. (2023). Cryo-EM structures of the Klebsiella pneumoniae AcrB multidrug efflux pump. mBio, 14(3), e00659-23. https://doi.org/10.1128/mbio.00659-23

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.