123
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Natural sapogenins as potential inhibitors of aquaporins for targeted cancer therapy: computational insights into binding and inhibition mechanism

, , , , &
Received 02 Sep 2023, Accepted 20 Dec 2023, Published online: 04 Jan 2024

References

  • Adnan, M., Anwar, S., DasGupta, D., Patel, M., Elasbali, A. M., Alhassan, H. H., Shafie, A., Siddiqui, A. J., Bardakci, F., Snoussi, M., & Hassan, M. I. (2023). Targeting inhibition of microtubule affinity regulating kinase 4 by Harmaline: Strategy to combat Alzheimer’s disease. International Journal of Biological Macromolecules, 224, 188–195. https://doi.org/10.1016/j.ijbiomac.2022.10.115
  • Adnan, M., DasGupta, D., Anwar, S., Patel, M., Jamal Siddiqui, A., Bardakci, F., Snoussi, M., & Imtaiyaz Hassan, M. (2023). Investigating role of plumbagin in preventing neurodegenerative diseases via inhibiting microtubule affinity regulating kinase 4. Journal of Molecular Liquids, 384, 122267. https://doi.org/10.1016/j.molliq.2023.122267
  • Adnan, M., Patel, M., & Snoussi, M. (2023). Ethnobotany and ethnopharmacology of medicinal and aromatic plants: Steps towards drug discovery. CRC Press.
  • Adnan, M., Shamsi, A., Elasbali, A. M., Siddiqui, A. J., Patel, M., Alshammari, N., Alharethi, S. H., Alhassan, H. H., Bardakci, F., & Hassan, M. I. (2022). Structure-guided approach to discover tuberosin as a potent activator of pyruvate kinase M2, targeting cancer therapy. International Journal of Molecular Sciences, 23(21), 13172. https://doi.org/10.3390/ijms232113172
  • Adnan, M., Siddiqui, A. J., Hamadou, W. S., Patel, M., Ashraf, S. A., Jamal, A., Awadelkareem, A. M., Sachidanandan, M., Snoussi, M., & De Feo, V. (2021). Phytochemistry, bioactivities, pharmacokinetics and toxicity prediction of Selaginella repanda with its anticancer potential against human lung, breast and colorectal carcinoma cell lines. Molecules (Basel, Switzerland), 26(3), 768. https://doi.org/10.3390/molecules26030768
  • Adnan, M., Siddiqui, A. J., Hamadou, W. S., Snoussi, M., Badraoui, R., Ashraf, S. A., Jamal, A., Awadelkareem, A. M., Sachidanandan, M., Hadi, S., Khan, M. A., & Patel, M. (2021). Deciphering the molecular mechanism responsible for efficiently inhibiting metastasis of human non-small cell lung and colorectal cancer cells targeting the matrix metalloproteinases by Selaginella repanda. Plants, 10(5), 979. https://doi.org/10.3390/plants10050979
  • Aikman, B., De Almeida, A., Meier-Menches, S. M., & Casini, A. (2018). Aquaporins in cancer development: Opportunities for bioinorganic chemistry to contribute novel chemical probes and therapeutic agents. Metallomics: Integrated Biometal Science, 10(5), 696–712. https://doi.org/10.1039/c8mt00072g
  • Arunkumar, R., Sharmila, G., Elumalai, P., Senthilkumar, K., Banudevi, S., Gunadharini, D. N., Benson, C. S., Daisy, P., & Arunakaran, J. (2012). Effect of diallyl disulfide on insulin-like growth factor signaling molecules involved in cell survival and proliferation of human prostate cancer cells in vitro and in silico approach through docking analysis. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 19(10), 912–923. https://doi.org/10.1016/j.phymed.2012.04.009
  • Bachran, C., Bachran, S., Sutherland, M., Bachran, D., & Fuchs, H. (2008). Saponins in tumor therapy. Mini Reviews in Medicinal Chemistry, 8(6), 575–584. https://doi.org/10.2174/138955708784534445
  • Baell, J. B. (2016). Feeling nature’s PAINS: Natural products, natural product drugs, and pan assay interference compounds (PAINS). Journal of Natural Products, 79(3), 616–628. https://doi.org/10.1021/acs.jnatprod.5b00947
  • Bahaman, A. H., Wahab, R. A., Abdul Hamid, A. A., Abd Halim, K. B., & Kaya, Y. (2021). Molecular docking and molecular dynamics simulations studies on β-glucosidase and xylanase Trichoderma asperellum to predict degradation order of cellulosic components in oil palm leaves for nanocellulose preparation. Journal of Biomolecular Structure & Dynamics, 39(7), 2628–2641. https://doi.org/10.1080/07391102.2020.1751713
  • Basith, S., Cui, M., Macalino, S. J., & Choi, S. (2017). Expediting the design, discovery and development of anticancer drugs using computational approaches. Current Medicinal Chemistry, 24(42), 4753–4778. https://doi.org/10.2174/0929867323666160902160535
  • Benson, J. R., & Jatoi, I. (2012). The global breast cancer burden. Future Oncology (London, England), 8(6), 697–702. https://doi.org/10.2217/fon.12.61
  • Bhatt, M., Patel, M., Adnan, M., & Reddy, M. N. (2021). Anti-metastatic effects of lupeol via the inhibition of MAPK/ERK pathway in lung cancer. Anti-Cancer Agents in Medicinal Chemistry, 21(2), 201–206. https://doi.org/10.2174/18715206MTA2oMDgk4
  • Bouabdallah, S., Al-Maktoum, A., & Amin, A. (2023). Steroidal saponins: Naturally occurring compounds as inhibitors of the hallmarks of cancer. Cancers, 15(15), 3900. https://doi.org/10.3390/cancers15153900
  • Bouali, N., Ahmad, I., Patel, H., Alhejaili, E. B., Hamadou, W. S., Badraoui, R., Hadj Lajimi, R., Alreshidi, M., Siddiqui, A. J., Adnan, M., Abdulhakeem, M. A., Bazaid, A. S., Patel, M., Saeed, M., Snoussi, M., & Noumi, E. (2023). GC–MS screening of the phytochemical composition of Ziziphus honey: ADME properties and in vitro/in silico study of its antimicrobial activity. Journal of Biomolecular Structure & Dynamics, 1–13. https://doi.org/10.1080/07391102.2023.2205945
  • Chen, B., Zhou, S., Zhan, Y., Ke, J., Wang, K., Liang, Q., Hou, Y., Zhu, P., Ao, W., Wei, X., & Xiao, J. (2019). Dioscin inhibits the invasion and migration of hepatocellular carcinoma HepG2 cells by reversing TGF-β1-induced epithelial-mesenchymal transition. Molecules (Basel, Switzerland), 24(12), 2222. https://doi.org/10.3390/molecules24122222
  • Cheng, V. C., Lau, S. K., Woo, P. C., & Yuen, K. Y. (2007). Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clinical Microbiology Reviews, 20(4), 660–694. https://doi.org/10.1128/CMR.00023-07
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Desai, A. G., Qazi, G. N., Ganju, R. K., El-Tamer, M., Singh, J., Saxena, A. K., Bedi, Y. S., Taneja, S. C., & Bhat, H. K. (2008). Medicinal plants and cancer chemoprevention. Current Drug Metabolism, 9(7), 581–591. https://doi.org/10.2174/138920008785821657
  • El Aziz, M., Ashour, A., & Melad, A. G. (2019). A review on saponins from medicinal plants: Chemistry, isolation, and determination. Journal of Nanomedicine Research, 7(4), 282–288. https://doi.org/10.15406/jnmr.2019.07.00199
  • Elasbali, A. M., Al-Soud, W. A., Mousa Elayyan, A. E., Al-Oanzi, Z. H., Alhassan, H. H., Mohamed, B. M., Alanazi, H. H., Ashraf, M. S., Moiz, S., Patel, M., Patel, M., & Adnan, M. (2023). Integrating network pharmacology approaches for the investigation of multi-target pharmacological mechanism of 6-shogaol against cervical cancer. Journal of Biomolecular Structure & Dynamics, 41(23), 14135–14151. https://doi.org/10.1080/07391102.2023.2191719
  • Elekofehinti, O. O., Iwaloye, O., Olawale, F., & Ariyo, E. O. (2021). Saponins in cancer treatment: Current progress and future prospects. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 28(2), 250–272. https://doi.org/10.3390/pathophysiology28020017
  • Ezeife, D. A., Morganstein, B. J., Lau, S., Law, J. H., Le, L. W., Bredle, J., Cella, D., Doherty, M. K., Bradbury, P., Liu, G., Sacher, A., Shepherd, F. A., & Leighl, N. B. (2019). Financial burden among patients with lung cancer in a publically funded health care system. Clinical Lung Cancer, 20(4), 231–236. https://doi.org/10.1016/j.cllc.2018.12.010
  • Faizal, A., & Geelen, D. (2013). Saponins and their role in biological processes in plants. Phytochemistry Reviews, 12(4), 877–893. https://doi.org/10.1007/s11101-013-9322-4
  • Fan, G., Filipczak, L., & Chow, E. (2007). Symptom clusters in cancer patients: A review of the literature. Current Oncology (Toronto, Ont.), 14(5), 173–179. https://doi.org/10.3747/co.2007.145
  • Ford, N., Vitoria, M., Rangaraj, A., Norris, S. L., Calmy, A., & Doherty, M. (2020). Systematic review of the efficacy and safety of antiretroviral drugs against SARS, MERS or COVID‐19: Initial assessment. Journal of the International AIDS Society, 23(4), e25489. https://doi.org/10.1002/jia2.25489
  • Gatenby, R. A., & Brown, J. S. (2020). The evolution and ecology of resistance in cancer therapy. Cold Spring Harbor Perspectives in Medicine, 10(11), a033415. https://doi.org/10.1101/cshperspect.a040261
  • Ghosh, S., Chetia, D., Gogoi, N., & Rudrapal, M. (2021). Design, molecular docking, drug-likeness, and molecular dynamics studies of 1, 2, 4-trioxane derivatives as novel Plasmodium falciparum falcipain-2 (FP-2) inhibitors. Biotechnologia, 102(3), 257–275. https://doi.org/10.5114/bta.2021.108722
  • Gillet, J.-N. (2022). From molecular dynamics to quantum mechanics of misfolded proteins and amyloid-like macroaggregates applied to neurodegenerative diseases. Journal of Molecular Graphics & Modelling, 110, 108046. https://doi.org/10.1016/j.jmgm.2021.108046
  • Gupta, D., Kumar, M., Singh, M., Salman, M., Das, U., & Kaur, P. (2022). Identification of polypharmacological anticancerous molecules against Aurora kinase family of proteins. Journal of Cellular Biochemistry, 123(4), 719–735. https://doi.org/10.1002/jcb.30214
  • Gurung, A. B., Ali, M. A., Lee, J., Farah, M. A., & Al-Anazi, K. M. (2021). An updated review of computer-aided drug design and its application to COVID-19. BioMed Research International, 2021, 8853056. https://doi.org/10.1155/2021/8853056
  • Gurung, A. B., Bhattacharjee, A., & Ali, M. A. (2016). Exploring the physicochemical profile and the binding patterns of selected novel anticancer Himalayan plant derived active compounds with macromolecular targets. Informatics in Medicine Unlocked, 5, 1–14. https://doi.org/10.1016/j.imu.2016.09.004
  • Guy, G. P., Yabroff, K. R., Ekwueme, D. U., Virgo, K. S., Han, X., Banegas, M. P., Soni, A., Zheng, Z., Chawla, N., & Geiger, A. M. (2015). Healthcare expenditure burden among non-elderly cancer survivors, 2008–2012. American Journal of Preventive Medicine, 49(6 Suppl 5), S489–S497. https://doi.org/10.1016/j.amepre.2015.09.002
  • Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5–6), 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
  • Hamed, A. R., Abdel-Azim, N. S., Shams, K. A., & Hammouda, F. M. (2019). Targeting multidrug resistance in cancer by natural chemosensitizers. Bulletin of the National Research Centre, 43(1), 1–14. https://doi.org/10.1186/s42269-019-0043-8
  • Hua, H., Zhu, Y., & Song, Y.-H. (2018). Ruscogenin suppressed the hepatocellular carcinoma metastasis via PI3K/Akt/mTOR signaling pathway. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 101, 115–122. https://doi.org/10.1016/j.biopha.2018.02.031
  • Huang, H., Nie, C., Qin, X., Zhou, J., & Zhang, L. (2019). Diosgenin inhibits the epithelial‑mesenchymal transition initiation in osteosarcoma cells via the p38MAPK signaling pathway. Oncology Letters, 18(4), 4278–4287. https://doi.org/10.3892/ol.2019.10780
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/nmeth.4067
  • Huang, N., Yu, D., Wu, J., & Du, X. (2022). Diosgenin: An important natural pharmaceutical active ingredient. Food Science and Technology, 42, 1–13. https://doi.org/10.1590/fst.94521
  • Ibrahim, M. A. A., Abdelrahman, A. H. M., Hussien, T. A., Badr, E. A. A., Mohamed, T. A., El-Seedi, H. R., Pare, P. W., Efferth, T., & Hegazy, M.-E F. (2020). In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Computers in Biology and Medicine, 126, 104046. https://doi.org/10.1016/j.compbiomed.2020.104046
  • Ingrosso, G., Detti, B., Scartoni, D., Lancia, A., Giacomelli, I., Baki, M., Carta, G., Livi, L., & Santoni, R. (2018). Current therapeutic options in metastatic castration-resistant prostate cancer. Seminars in Oncology, 45(5–6), 303–315. https://doi.org/10.1053/j.seminoncol.2018.10.001
  • Isyaku, Y., Uzairu, A., & Uba, S. (2020). Computational studies of a series of 2-substituted phenyl-2-oxo-, 2-hydroxyl-and 2-acylloxyethylsulfonamides as potent anti-fungal agents. Heliyon, 6(4), e03724. https://doi.org/10.1016/j.heliyon.2020.e03724
  • Jorgensen, W. L., & Duffy, E. M. (2002). Prediction of drug solubility from structure. Advanced Drug Delivery Reviews, 54(3), 355–366. https://doi.org/10.1016/s0169-409x(02)00008-x
  • Juang, Y.-P., & Liang, P.-H. (2020). Biological and pharmacological effects of synthetic saponins. Molecules (Basel, Switzerland), 25(21), 4974. https://doi.org/10.3390/molecules25214974
  • Junejo, J. A., Zaman, K., Rudrapal, M., Celik, I., & Attah, E. I. (2021). Antidiabetic bioactive compounds from Tetrastigma angustifolia (Roxb.) Deb and Oxalis debilis Kunth.: Validation of ethnomedicinal claim by in vitro and in silico studies. South African Journal of Botany, 143, 164–175. https://doi.org/10.1016/j.sajb.2021.07.023
  • Kang, J.-H., Han, I.-H., Sung, M.-K., Yoo, H., Kim, Y.-G., Kim, J.-S., Kawada, T., & Yu, R. (2008). Soybean saponin inhibits tumor cell metastasis by modulating expressions of MMP-2, MMP-9 and TIMP-2. Cancer Letters, 261(1), 84–92. https://doi.org/10.1016/j.canlet.2007.11.006
  • Khan, T., Ali, M., Khan, A., Nisar, P., Jan, S. A., Afridi, S., & Shinwari, Z. K. (2019). Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules, 10(1), 47. https://doi.org/10.3390/biom10010047
  • Khan, J., Asoom, L. I. A., Khan, M., Chakrabartty, I., Dandoti, S., Rudrapal, M., & Zothantluanga, J. H. (2021). Evolution of RNA viruses from SARS to SARS-CoV-2 and diagnostic techniques for COVID-19: A review. Beni-Suef University Journal of Basic and Applied Sciences, 10(1), 60. https://doi.org/10.1186/s43088-021-00150-7
  • Khan, M. I., Karima, G., Khan, M. Z., Shin, J. H., & Kim, J. D. (2022). Therapeutic effects of saponins for the prevention and treatment of cancer by ameliorating inflammation and angiogenesis and inducing antioxidant and apoptotic effects in human cells. International Journal of Molecular Sciences, 23(18), 10665. https://doi.org/10.3390/ijms231810665
  • Koczurkiewicz, P., Czyż, J., Podolak, I., Wójcik, K., Galanty, A., Janeczko, Z., & Michalik, M. (2015). Multidirectional effects of triterpene saponins on cancer cells-mini-review of in vitro studies. Acta Biochimica Polonica, 62(3), 383–393. https://doi.org/10.18388/abp.2015_1089
  • Kousar, K., Majeed, A., Yasmin, F., Hussain, W., & Rasool, N. (2020). Phytochemicals from selective plants have promising potential against SARS-CoV-2: Investigation and corroboration through molecular docking, MD simulations, and quantum computations. BioMed Research International, 2020, 6237160–6237115. https://doi.org/10.1155/2020/6237160
  • Kumar, M., Dubey, R., Kumar Shukla, P., Dayal, D., Kumar Chaubey, K., Tsai, L.-W., & Kumar, S. (2023). Identification of small molecule inhibitors of RAD52 for breast cancer therapy: In silico approach. Journal of Biomolecular Structure & Dynamics, 1–14. https://doi.org/10.1080/07391102.2023.2220822
  • Kumar, M., Tripathi, M. K., Gupta, D., Kumar, S., Biswas, N. R., Ethayathulla, A., & Kaur, P. (2023). N-acetylglucosamine-phosphatidylinositol de-N-acetylase as a novel target for probing potential inhibitor against Leishmania donovani. Journal of Biomolecular Structure & Dynamics, 41(5), 1904–1918. https://doi.org/10.1080/07391102.2021.2025429
  • Kuruppu, A. I., Paranagama, P., & Goonasekara, C. L. (2019). Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharmaceutical Journal: SPJ: The Official Publication of the Saudi Pharmaceutical Society, 27(4), 565–573. https://doi.org/10.1016/j.jsps.2019.02.004
  • Lahlou, M. (2007). Screening of natural products for drug discovery. Expert Opinion on Drug Discovery, 2(5), 697–705. https://doi.org/10.1517/17460441.2.5.697
  • Lastraioli, E., Iorio, J., & Arcangeli, A. (2015). Ion channel expression as promising cancer biomarker. Biochimica et Biophysica Acta, 1848(10 Pt B), 2685–2702. https://doi.org/10.1016/j.bbamem.2014.12.016
  • Lauria, A., Tutone, M., Ippolito, M., Pantano, L., & Almerico, A. (2010). Molecular modeling approaches in the discovery of new drugs for anti-cancer therapy: The investigation of p53-MDM2 interaction and its inhibition by small molecules. Current Medicinal Chemistry, 17(28), 3142–3154. https://doi.org/10.2174/092986710792232021
  • Liu, H., Chou, G.-X., Wu, T., Guo, Y.-L., Wang, S.-C., Wang, C.-H., & Wang, Z.-T. (2009). Steroidal sapogenins and glycosides from the rhizomes of Dioscorea bulbifera. Journal of Natural Products, 72(11), 1964–1968. https://doi.org/10.1021/np900255h
  • Liu, T., Li, Y., Sun, J., Tian, G., & Shi, Z. (2022). Gitogenin suppresses lung cancer progression by inducing apoptosis and autophagy initiation through the activation of AMPK signaling. International Immunopharmacology, 111, 108806. https://doi.org/10.1016/j.intimp.2022.108806
  • Majnooni, M. B., Fakhri, S., Ghanadian, S. M., Bahrami, G., Mansouri, K., Iranpanah, A., Farzaei, M. H., & Mojarrab, M. (2023). Inhibiting angiogenesis by anti-cancer saponins: From phytochemistry to cellular signaling pathways. Metabolites, 13(3), 323. https://doi.org/10.3390/metabo13030323
  • Man, S., Chai, H., Cui, J., Yao, J., Ma, L., & Gao, W. (2018). Antitumor and anti‐metastatic mechanisms of Rhizoma paridis saponins in Lewis mice. Environmental Toxicology, 33(2), 149–155. https://doi.org/10.1002/tox.22501
  • Man, S., Gao, W., Zhang, Y., Yan, L., Ma, C., Liu, C., & Huang, L. (2009). Antitumor and antimetastatic activities of Rhizoma paridis saponins. Steroids, 74(13–14), 1051–1056. https://doi.org/10.1016/j.steroids.2009.08.004
  • Mathur, S., & Hoskins, C. (2017). Drug development: Lessons from nature. Biomedical Reports, 6(6), 612–614. https://doi.org/10.3892/br.2017.909
  • Miglietta, F., Bottosso, M., Griguolo, G., Dieci, M., & Guarneri, V. (2022). Major advancements in metastatic breast cancer treatment: When expanding options means prolonging survival. ESMO Open, 7(2), 100409. https://doi.org/10.1016/j.esmoop.2022.100409
  • Montanari, R., Capelli, D., Tava, A., Galli, A., Laghezza, A., Tortorella, P., Loiodice, F., & Pochetti, G. (2016). Screening of saponins and sapogenins from Medicago species as potential PPARγ agonists and X-ray structure of the complex PPARγ/caulophyllogenin. Scientific Reports, 6(1), 27658. https://doi.org/10.1038/srep27658
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Naeini, V. F., Foroutan, M., Maddah, M., Rémond, Y., & Baniassadi, M. (2018). Determinative factors in inhibition of aquaporin by different pharmaceuticals: Atomic scale overview by molecular dynamics simulation. Biochimica et Biophysica Acta. General Subjects, 1862(12), 2815–2823. https://doi.org/10.1016/j.bbagen.2018.09.002
  • Othman, I. M., Mahross, M. H., Gad-Elkareem, M. A., Rudrapal, M., Gogoi, N., Chetia, D., Aouadi, K., Snoussi, M., & Kadri, A. (2021). Toward a treatment of antibacterial and antifungal infections: Design, synthesis and in vitro activity of novel arylhydrazothiazolylsulfonamides analogues and their insight of DFT, docking and molecular dynamic simulations. Journal of Molecular Structure, 1243, 130862. https://doi.org/10.1016/j.molstruc.2021.130862
  • Páll, S., Abraham, M. J., Kutzner, C., Hess, B., & Lindahl, E. (2015). Tackling exascale software challenges in molecular dynamics simulations with GROMACS. Solving Software Challenges for Exascale: International Conference on Exascale Applications and Software, EASC 2014, Stockholm, Sweden., April 2–3, 2014, Revised Selected Papers 2 (pp. 3–27). Springer.
  • Rao, A., & Sung, M.-K. (1995). Saponins as anticarcinogens. The Journal of Nutrition, 125(3 Suppl), 717S–724S. https://doi.org/10.1093/jn/125.3_Suppl.717S
  • Rastelli, G., Rio, A. D., Degliesposti, G., & Sgobba, M. (2010). Fast and accurate predictions of binding free energies using MM‐PBSA and MM‐GBSA. Journal of Computational Chemistry, 31(4), 797–810. https://doi.org/10.1002/jcc.21372
  • Reddy, M. N., Adnan, M., Alreshidi, M. M., Saeed, M., & Patel, M. (2020). Evaluation of anticancer, antibacterial and antioxidant properties of a medicinally treasured fern Tectaria coadunata with its phytoconstituents analysis by HR-LCMS. Anti-Cancer Agents in Medicinal Chemistry,), 20(15), 1845–1856. https://doi.org/10.2174/1871520620666200318101938
  • Ren, Q.-L., Wang, Q., Zhang, X.-Q., Wang, M., Hu, H., Tang, J.-J., Yang, X.-T., Ran, Y.-H., Liu, H.-H., Song, Z.-X., Liu, J.-G., & Li, X.-L. (2023). Anticancer activity of diosgenin and its molecular mechanism. Chinese Journal of Integrative Medicine, 29(8), 738–749. https://doi.org/10.1007/s11655-023-3693-1
  • Rudrapal, M., Chetia, D., & Singh, V. (2017). Novel series of 1, 2, 4-trioxane derivatives as antimalarial agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1159–1173. https://doi.org/10.1080/14756366.2017.1363742
  • Salmaso, V., & Moro, S. (2018). Bridging molecular docking to molecular dynamics in exploring ligand–protein recognition process: An overview. Frontiers in Pharmacology, 9, 923. https://doi.org/10.3389/fphar.2018.00923
  • Sexton, R. E., Al Hallak, M. N., Diab, M., & Azmi, A. S. (2020). Gastric cancer: A comprehensive review of current and future treatment strategies. Cancer Metastasis Reviews, 39(4), 1179–1203. https://doi.org/10.1007/s10555-020-09925-3
  • Studio D. (2008). Discovery studio. Accelrys [2.1]. https://discover.3ds.com/discovery-studio-visualizer-download.
  • Sun, W., & Yan, L. (2016). Gastric cancer: Current and evolving treatment landscape. Chinese Journal of Cancer, 35(1), 83. https://doi.org/10.1186/s40880-016-0147-6
  • Tarantino, P., Corti, C., Schmid, P., Cortes, J., Mittendorf, E. A., Rugo, H., Tolaney, S. M., Bianchini, G., Andrè, F., & Curigliano, G. (2022). Immunotherapy for early triple negative breast cancer: Research agenda for the next decade. NPJ Breast Cancer, 8(1), 23. https://doi.org/10.1038/s41523-022-00386-1
  • Tin, M. M., Cho, C.-H., Chan, K., James, A. E., & Ko, J. K. (2007). Astragalus saponins induce growth inhibition and apoptosis in human colon cancer cells and tumor xenograft. Carcinogenesis, 28(6), 1347–1355. https://doi.org/10.1093/carcin/bgl238
  • Tradtrantip, L., Jin, B.-J., Yao, X., Anderson, M. O., & Verkman, A. S. (2017). Aquaporin-targeted therapeutics: State-of-the-field. Advances in Experimental Medicine and Biology, 969, 239–250. https://doi.org/10.1007/978-94-024-1057-0_16
  • Trott, O., & Olson, A. (2009). Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Verkman, A. S., Anderson, M. O., & Papadopoulos, M. C. (2014). Aquaporins: Important but elusive drug targets. Nature Reviews. Drug Discovery, 13(4), 259–277. https://doi.org/10.1038/nrd4226
  • Vieira, T. F., & Sousa, S. F. (2019). Comparing AutoDock and Vina in ligand/decoy discrimination for virtual screening. Applied Sciences, 9(21), 4538. https://doi.org/10.3390/app9214538
  • Wang, P., Cui, J., Du, X., Yang, Q., Jia, C., Xiong, M., Yu, X., Li, L., Wang, W., Chen, Y., & Zhang, T. (2014). Panax notoginseng saponins (PNS) inhibits breast cancer metastasis. Journal of Ethnopharmacology, 154(3), 663–671. https://doi.org/10.1016/j.jep.2014.04.037
  • Wang, J., Feng, L., Zhu, Z., Zheng, M., Wang, D., Chen, Z., & Sun, H. (2015). Aquaporins as diagnostic and therapeutic targets in cancer: How far we are? Journal of Translational Medicine, 13(1), 96. https://doi.org/10.1186/s12967-015-0439-7
  • Yadav, E., Yadav, N., Hus, A., & Yadav, J. S. (2020). Aquaporins in lung health and disease: Emerging roles, regulation, and clinical implications. Respiratory Medicine, 174, 106193. https://doi.org/10.1016/j.rmed.2020.106193
  • Yulianti, L., Bramono, K., & Freisleben, H, Biomedical Sciences Doctoral Program Faculty of Medicine University of Indonesia. (2017). In silico molecular modeling and docking studies of Aquaporin-3 with Centella asiatica active compound. International Journal of Pharma Sciences and Scientific Research, 3(6), 71–73. https://doi.org/10.25141/2471-6782-2017-6.0071
  • Zhang, D., & Lazim, R. (2017). Application of conventional molecular dynamics simulation in evaluating the stability of apomyoglobin in urea solution. Scientific Reports, 7(1), 44651. https://doi.org/10.1038/srep44651
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhang, H., Xu, J., Wang, M., Xia, X., Dai, R., & Zhao, Y. (2020). Steroidal saponins and sapogenins from fenugreek and their inhibitory activity against α-glucosidase. Steroids, 161, 108690. https://doi.org/10.1016/j.steroids.2020.108690

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.