107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structure-based drug discovery to identify SARS-CoV2 spike protein–ACE2 interaction inhibitors

, , &
Received 15 Jul 2023, Accepted 13 Dec 2023, Published online: 04 Jan 2024

References

  • Bitencourt-Ferreira, G., & de Azevedo, W. F. (2019). Homology modeling of protein targets with MODELLER. In W. F. de Azevedo Jr. (Ed.), Docking screens for drug discovery. Methods in molecular biology (pp. 231–249). Springer. https://doi.org/10.1007/978-1-4939-9752-7_15
  • Bojadzic, D., Alcazar, O., Chen, J., Chuang, S. T., Condor Capcha, J. M., Shehadeh, L. A., & Buchwald, P. (2021). Small-molecule inhibitors of the coronavirus spike: ACE2 protein–protein interaction as blockers of viral attachment and entry for SARS-CoV-2. ACS Infectious Diseases, 7(6), 1519–1534. https://doi.org/10.1021/acsinfecdis.1c00070
  • Boyle, A., Moss, C. E., Marzolini, C., & Khoo, S. (2019). Clinical pharmacodynamics, pharmacokinetics, and drug interaction profile of doravirine. Clinical Pharmacokinetics, 58(12), 1553–1565. https://doi.org/10.1007/s40262-019-00806-9
  • Brielle, E. S., Schneidman-Duhovny, D., & Linial, M. (2020). The SARS-CoV-2 exerts a distinctive strategy for interacting with the ACE2 human receptor. Viruses, 12(5), 497. https://doi.org/10.3390/v12050497
  • Buchwald, P. (2022). Developing small-molecule inhibitors of protein-protein interactions involved in viral entry as potential antivirals for COVID-19. Frontiers in Drug Discovery, 2. https://doi.org/10.3389/fddsv.2022.898035
  • Chitsike, L., Krstenansky, J., & Duerksen-Hughes, P. J. (2021). ACE2 : S1 RBD interaction-targeted peptides and small molecules as potential COVID-19 therapeutics. Advances in Pharmacological and Pharmaceutical Sciences, 2021, e1828792. https://doi.org/10.1155/2021/1828792
  • Curreli, F., Victor, S. M. B., Ahmed, S., Drelich, A., Tong, X., Tseng, C. T. K., Hillyer, C. D., & Debnath, A. K. (2020). Stapled peptides based on human angiotensin-converting enzyme 2 (ACE2) potently inhibit SARS-CoV-2 infection in vitro. MBio, 11(6), e02451-20. https://doi.org/10.1128/mBio.02451-20
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh ewald: An N⋅log(N) method for ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Franceschini, N., Joy, M. S., & Kshirsagar, A. (2003). Cinacalcet HCl: A calcimimetic agent for the management of primary and secondary hyperparathyroidism. Expert Opinion on Investigational Drugs, 12(8), 1413–1421. https://doi.org/10.1517/13543784.12.8.1413
  • Gangadevi, S., Badavath, V. N., Thakur, A., Yin, N., De Jonghe, S., Acevedo, O., Jochmans, D., Leyssen, P., Wang, K., Neyts, J., Yujie, T., & Blum, G. (2021). Kobophenol A inhibits binding of host ACE2 receptor with spike RBD domain of SARS-CoV-2, a lead compound for blocking COVID-19. The Journal of Physical Chemistry Letters, 12(7), 1793–1802. https://doi.org/10.1021/acs.jpclett.0c03119
  • Gartland, M., Zhou, N., Stewart, E., Pierce, A., Clark, A., Ackerman, P., Llamoso, C., Lataillade, M., & Krystal, M. (2021). Susceptibility of global HIV-1 clinical isolates to fostemsavir using the phenoSense® entry assay. The Journal of Antimicrobial Chemotherapy, 76(3), 648–652. https://doi.org/10.1093/jac/dkaa474
  • Gupta, P., & Mohanty, D. (2021). SMMPPI: A machine learning-based approach for prediction of modulators of protein-protein interactions and its application for identification of novel inhibitors for RBD: HACE2 interactions in SARS-CoV-2. Briefings in Bioinformatics, 22(5), bbab111. https://doi.org/10.1093/bib/bbab111
  • Hanauske, A. R., Chen, V., Paoletti, P., & Niyikiza, C. (2001). Pemetrexed disodium: A novel antifolate clinically active against multiple solid tumors. The Oncologist, 6(4), 363–373. https://doi.org/10.1634/theoncologist.6-4-363
  • Heo, L., Lee, H., & Seok, C. (2016). GalaxyRefineComplex: Refinement of protein-protein complex model structures driven by interface repacking. Scientific Reports, 6(1), 32153. https://doi.org/10.1038/srep32153
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472.
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Ho, T. Y., Wu, S. L., Chen, J. C., Li, C. C., & Hsiang, C. Y. (2007). Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Research, 74(2), 92–101. https://doi.org/10.1016/j.antiviral.2006.04.014
  • Jha, P., Saluja, D., & Chopra, M. (2022). Structure-guided pharmacophore based virtual screening, docking, and molecular dynamics to discover repurposed drugs as novel inhibitors against endoribonuclease Nsp15 of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 41(11), 5096–5106. https://doi.org/10.1080/07391102.2022.2079561
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kant, R., Jha, P., Saluja, D., & Chopra, M. (2022). Identification of novel inhibitors of neisseria gonorrhoeae murI using homology modeling, structure-based pharmacophore, molecular docking, and molecular dynamics simulation-based approach. Journal of Biomolecular Structure & Dynamics, 41(15), 7433-7446.https://doi.org/10.1080/07391102.2022.2121943
  • Kao, R. Y., Tsui, W. H. W., Lee, T. S. W., Tanner, J. A., Watt, R. M., Huang, J. D., Hu, L., Chen, G., Chen, Z., Zhang, L., He, T., Chan, K. H., Tse, H., To, A. P. C., Ng, L. W. Y., Wong, B. C. W., Tsoi, H. W., Yang, D., Ho, D. D., & Yuen, K. Y. (2004). Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chemistry & Biology, 11(9), 1293–1299. https://doi.org/10.1016/j.chembiol.2004.07.013
  • Karoyan, P., Vieillard, V., Gómez-Morales, L., Odile, E., Guihot, A., Luyt, C. E., Denis, A., Grondin, P., & Lequin, O. (2021). Human ACE2 peptide-mimics block SARS-CoV-2 pulmonary cells infection. Communications Biology, 4(1), 197. https://doi.org/10.1038/s42003-021-01736-8
  • Kaushik, R., & Jayaram, B. (2016). Structural difficulty index: A reliable measure for modelability of protein tertiary structures. Protein Engineering, Design & Selection, 29(9), 391–397. https://doi.org/10.1093/protein/gzw025
  • Kaushik, R., Singh, A., & Jayaram, B. (2018). Where informatics lags chemistry leads. Biochemistry, 57(5), 503–506. https://doi.org/10.1021/acs.biochem.7b01073
  • Kaushik, R., & Zhang, K. Y. J. (2020). A protein sequence fitness function for identifying natural and nonnatural proteins. Proteins, 88(10), 1271–1284. https://doi.org/10.1002/prot.25900
  • Kaushik, R., & Zhang, K. Y. J. (2022). ProFitFun: A protein tertiary structure fitness function for quantifying the accuracies of model structures. Bioinformatics (Oxford, England), 38(2), 369–376. https://doi.org/10.1093/bioinformatics/btab666
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Kou, M. C., Chiou, S. Y., Weng, C. Y., Wang, L., Ho, C. T., & Wu, M. J. (2013). Curcuminoids distinctly exhibit antioxidant activities and regulate expression of scavenger receptors and heme oxygenase-1. Molecular Nutrition & Food Research, 57(9), 1598–1610. https://doi.org/10.1002/mnfr.201200227
  • Kramer, V. G., Schader, S. M., Oliveira, M., Colby-Germinario, S. P., Donahue, D. A., Singhroy, D. N., Tressler, R., Sloan, R. D., & Wainberg, M. A. (2012). Maraviroc and other HIV-1 entry inhibitors exhibit a class-specific redistribution effect that results in increased extracellular viral load. Antimicrobial Agents and Chemotherapy, 56(8), 4154–4160. https://doi.org/10.1128/AAC.00409-12
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Lau, E. Y., Negrete, O. A., Bennett, W. F. D., Bennion, B. J., Borucki, M., Bourguet, F., Epstein, A., Franco, M., Harmon, B., He, S., Jones, D., Kim, H., Kirshner, D., Lao, V., Lo, J., McLoughlin, K., Mosesso, R., Murugesh, D. K., Saada, E. A., … Lightstone, F. C. (2021). Discovery of small-molecule inhibitors of SARS-CoV-2 proteins using a computational and experimental pipeline. Frontiers in Molecular Biosciences, 8, 678701. https://doi.org/10.3389/fmolb.2021.678701
  • Li, F., Li, W., Farzan, M., & Harrison, S. C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science (New York, NY), 309(5742), 1864–1868. https://doi.org/10.1126/science.1116480
  • Lokhande, K. B., Doiphode, S., Vyas, R., & Venkateswara Swamy, K. (2021). Molecular docking and simulation studies on SARS-CoV- Mpro reveals mitoxantrone, leucovorin, birinapant, and dynasore as potent drugs against COVID-19. Journal of Biomolecular Structure & Dynamics, 39(18), 7294–7305. https://doi.org/10.1080/07391102.2020.1805019
  • Loxistatin Acid (E-64C) (n.d.). 99.82%(HPLC) selleck cysteine protease inhibitor.”. Selleckchem.Com. Accessed May 2, 2023. https://www.selleckchem.com/products/loxistatin-acid-e-64c.html.
  • Manoharan, S., Balakrishnan, A., Hemamalini, V., & Perumal, E. (2023). Screening of potent STAT3-SH2 domain inhibitors from JAK/STAT compound library through molecular dynamics simulation. Molecular Diversity, 27(3), 1297–1308. https://doi.org/10.1007/s11030-022-10490-w
  • McGuffin, L. J., Aldowsari, F. M. F., Alharbi, S. M. A., & Adiyaman, R. (2021). ModFOLD8: Accurate global and local quality estimates for 3D protein models. Nucleic Acids Research, 49(W1), W425–W430. https://doi.org/10.1093/nar/gkab321
  • Meanwell, N. A., Krystal, M. R., Nowicka-Sans, B., Langley, D. R., Conlon, D. A., Eastgate, M. D., Grasela, D. M., Timmins, P., Wang, T., & Kadow, J. F. (2018). Inhibitors of HIV-1 attachment: The discovery and development of temsavir and its prodrug fostemsavir. Journal of Medicinal Chemistry, 61(1), 62–80. https://doi.org/10.1021/acs.jmedchem.7b01337
  • Mediouni, S., Mou, H., Otsuka, Y., Jablonski, J. A., Adcock, R. S., Batra, L., Chung, D. H., Rood, C., de Vera, I. M. S., Rahaim, R., Ullah, S., Yu, X., Getmanenko, Y. A., Kennedy, N. M., Wang, C., Nguyen, T. T., Hull, M., Chen, E., Bannister, T. D., … Spicer, T. P. (2022). Identification of potent small molecule inhibitors of SARS-CoV-2 entry. SLAS Discovery: Advancing Life Sciences R & D, 27(1), 8–19. https://doi.org/10.1016/j.slasd.2021.10.012
  • Nakashima, D., Takama, H., Ogasawara, Y., Kawakami, T., Nishitoba, T., Hoshi, S., Uchida, E., & Tanaka, H. (2007). Effect of cinacalcet hydrochloride, a new calcimimetic agent, on the pharmacokinetics of dextromethorphan: In Vitro and clinical studies. Journal of Clinical Pharmacology, 47(10), 1311–1319. https://doi.org/10.1177/0091270007304103
  • Olechnovič, K., & Venclovas, Č. (2019). VoroMQA web server for assessing three-dimensional structures of proteins and protein complexes. Nucleic Acids Research, 47(W1), W437–W442. https://doi.org/10.1093/nar/gkz367
  • Omotuyi, O., Olatunji, O. M., Nash, O., Oyinloye, B., Soremekun, O., Ijagbuji, A., & Fatumo, S. (2023). Benzimidazole compound abrogates SARS-COV-2 receptor-binding domain (RBD)/ACE2 interaction in vitro. Microbial Pathogenesis, 176, 105994. https://doi.org/10.1016/j.micpath.2023.105994
  • Pei, G., Xu, W., Lan, J., Wang, X., & Li, P. (2022). CEBIT screening for inhibitors of the interaction between SARS-CoV-2 spike and ACE2. Fundamental Research, 2(4), 562–569. https://doi.org/10.1016/j.fmre.2022.01.034
  • PubChem. n.d. (2023). Miltefosine. Accessed May 2. https://pubchem.ncbi.nlm.nih.gov/compound/3599.
  • Razizadeh, M., Nikfar, M., & Liu, Y. (2020). Small molecules to destabilize the ACE2-RBD complex: A molecular dynamics study for potential COVID-19 therapeutics. ChemRxiv: The Preprint Server for Chemistry, December. https://doi.org/10.26434/chemrxiv.13377119
  • Re3data.Org. (2012). GISAID. https://doi.org/10.17616/R3Q59F
  • Riva, L., Yuan, S., Yin, X., Martin-Sancho, L., Matsunaga, N., Pache, L., Burgstaller-Muehlbacher, S., De Jesus, P. D., Teriete, P., Hull, M. V., Chang, M. W., Chan, J. F. W., Cao, J., Poon, V. K. M., Herbert, K. M., Cheng, K., Nguyen, T. T H., Rubanov, A., Pu, Y., … Chanda, S. K. (2020). Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 586(7827), 113–119. https://doi.org/10.1038/s41586-020-2577-1
  • Røe, O. D., Szulkin, A., Anderssen, E., Flatberg, A., Sandeck, H., Amundsen, T., Erlandsen, S. E., Dobra, K., & Sundstrøm, S. H. (2012). Molecular resistance fingerprint of pemetrexed and platinum in a long-term survivor of mesothelioma. PLoS One, 7(8), e40521. https://doi.org/10.1371/journal.pone.0040521
  • Shang, J., Wan, Y., Liu, C., Yount, B., Gully, K., Yang, Y., Auerbach, A., Peng, G., Baric, R., & Li, F. (2020). Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry. PLoS Pathogens, 16(3), e1008392. https://doi.org/10.1371/journal.ppat.1008392
  • Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221–224. https://doi.org/10.1038/s41586-020-2179-y
  • Singh, A., Kaushik, R., Mishra, A., Shanker, A., & Jayaram, B. (2016). ProTSAV: A protein tertiary structure analysis and validation server. Biochimica et Biophysica Acta, 1864(1), 11–19. https://doi.org/10.1016/j.bbapap.2015.10.004
  • Song, W., Gui, M., Wang, X., & Xiang, Y. (2018). Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathogens, 14(8), e1007236. https://doi.org/10.1371/journal.ppat.1007236
  • Szilagyi, A., & Zhang, Y. (2014). Template-based structure modeling of protein-protein interactions. Current Opinion in Structural Biology, 24, 10–23. https://doi.org/10.1016/j.sbi.2013.11.005
  • Tan, Q., Zhu, Y., Li, J., Chen, Z., Han, G. W., Kufareva, I., Li, T., Ma, L., Fenalti, G., Li, J., Zhang, W., Xie, X., Yang, H., Jiang, H., Cherezov, V., Liu, H., Stevens, R. C., Zhao, Q., & Wu, B. (2013). Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science (New York, NY), 341(6152), 1387–1390. https://doi.org/10.1126/science.1241475
  • Tortorici, M., Alejandra  ., & D., Veesler. (2019). Structural insights into coronavirus entry. Advances in Virus Research, 105, 93–116. https://doi.org/10.1016/bs.aivir.2019.08.002
  • Unni, S., Aouti, S., Thiyagarajan, S., & Padmanabhan, B. (2020). Identification of a repurposed drug as an inhibitor of spike protein of human coronavirus SARS-CoV-2 by computational methods. Journal of Biosciences, 45(1), 130. https://doi.org/10.1007/s12038-020-00102-w
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Walls, A. C., Park, Y. J., Alejandra Tortorici, M., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
  • Wang, L., Wu, Y., Yao, S., Ge, H., Zhu, Y., Chen, K., Chen, W. Z., Zhang, Y., Zhu, W., Wang, H. Y., Guo, Y., Ma, P. X., Ren, P. X., Zhang, X. L., Li, H. Q., Ali, M. A., Xu, W. Q., Jiang, H. L., Zhang, L. K., … Bai, F. (2022). Discovery of potential small molecular SARS-CoV-2 entry blockers targeting the spike protein. Acta Pharmacologica Sinica, 43(4), 788–796. https://doi.org/10.1038/s41401-021-00735-z
  • Widmer, F., Wright, L. C., Obando, D., Handke, R., Ganendren, R., Ellis, D. H., & Sorrell, T. C. (2006). Hexadecylphosphocholine (Miltefosine) has broad-spectrum fungicidal activity and is efficacious in a mouse model of cryptococcosis. Antimicrobial Agents and Chemotherapy, 50(2), 414–421. https://doi.org/10.1128/AAC.50.2.414-421.2006
  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, NY), 367(6485), 1444–1448. https://doi.org/10.1126/science.abb2762
  • Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., & Baker, D. (2020). Improved protein structure prediction using predicted interresidue orientations. Proceedings of the National Academy of Sciences of the United States of America, 117(3), 1496–1503. https://doi.org/10.1073/pnas.1914677117
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8. https://doi.org/10.1038/nmeth.3213
  • Zhang, C. H., Wang, Y. F., Liu, X. J., Lu, J. H., Qian, C. W., Wan, Z. Y., Yan, X. G., Zheng, H. Y., Zhang, M. Y., Xiong, S., Li, J. X., & Qi, S. Y. (2005). Antiviral activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro. Chinese Medical Journal, 118(6), 493–496. https://doi.org/10.5555/cmj.0366-6999.118.06.p493.01
  • Zhang, J., Adrián, F. J., Jahnke, W., Cowan-Jacob, S. W., Li, A. G., Iacob, R. E., Sim, T., Powers, J., Dierks, C., Sun, F., Guo, G.-R., Ding, Q., Okram, B., Choi, Y., Wojciechowski, A., Deng, X., Liu, G., Fendrich, G., Strauss, A., … Gray, N. S. (2010). Targeting wild-type and T315I Bcr-Abl by combining allosteric with ATP-site inhibitors. Nature, 463(7280), 501–506. https://doi.org/10.1038/nature08675
  • Zhao, M. M., Yang, W. L., Yang, F. Y., Zhang, L., Huang, W. J., Hou, W., Fan, C. F., Jin, R. H., Feng, Y. M., Wang, Y. C., & Yang, J. K. (2021). Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduction and Targeted Therapy, 6(1), 134. https://doi.org/10.1038/s41392-021-00558-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.