129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Beyond traditional medications: exploring novel and potential inhibitors of trypanothione reductase (LmTr) of Leishmania parasites

, , , , , , , , & show all
Received 11 Sep 2023, Accepted 07 Dec 2023, Published online: 04 Jan 2024

References

  • Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530–W534. https://doi.org/10.1093/nar/gkab294
  • Alcântara, L. M., Ferreira, T. C. S., Gadelha, F. R., & Miguel, D. C. (2018). Challenges in drug discovery targeting TriTryp diseases with an emphasis on leishmaniasis. International Journal for Parasitology. Drugs and Drug Resistance, 8(3), 430–439. https://doi.org/10.1016/j.ijpddr.2018.09.006
  • Antinarelli, L. M. R., Meinel, R. S., Coelho, E. A. F., da Silva, A. D., & Coimbra, E. S. (2019). Resveratrol analogues present effective antileishmanial activity against promastigotes and amastigotes from distinct Leishmania species by multitarget action in the parasites. The Journal of Pharmacy and Pharmacology, 71(12), 1854–1863. https://doi.org/10.1111/jphp.13177
  • Aronson, N. E., & Joya, C. A. (2019). Cutaneous Leishmaniasis. Infectious Disease Clinics of North America, 33(1), 101–117. https://doi.org/10.1016/j.idc.2018.10.004
  • Ashraf, S. A., Elkhalifa, A. E. O., Mehmood, K., Adnan, M., Khan, M. A., Eltoum, N. E., Krishnan, A., & Baig, M. S. (2021). Multi-targeted molecular docking, pharmacokinetics, and drug-likeness evaluation of okra-derived ligand abscisic acid targeting signaling proteins involved in the development of diabetes. Molecules (Basel, Switzerland), 26(19), 5957. https://doi.org/10.3390/molecules26195957
  • Battista, T., Colotti, G., Ilari, A., & Fiorillo, A. (2020). Targeting trypanothione reductase, a key enzyme in the redox trypanosomatid metabolism, to develop new drugs against leishmaniasis and trypanosomiases. Molecules (Basel, Switzerland), 25(8), 1924. https://doi.org/10.3390/molecules25081924
  • Bawono, P., & Heringa, J. (2014). PRALINE: A versatile multiple sequence alignment toolkit. Methods in Molecular Biology (Clifton, NJ), 1079, 245–262. https://doi.org/10.1007/978-1-62703-646-7_16
  • Devine, S. M., Challis, M. P., Kigotho, J. K., Siddiqui, G., De Paoli, A., MacRaild, C. A., Avery, V. M., Creek, D. J., Norton, R. S., & Scammells, P. J. (2021). Discovery and development of 2-aminobenzimidazoles as potent antimalarials. European Journal of Medicinal Chemistry, 221, 113518. https://doi.org/10.1016/j.ejmech.2021.113518
  • Garza-Tovar, T. F., Sacriste-Hernández, M. I., Juárez-Durán, E. R., & Arenas, R. (2020). An overview of the treatment of cutaneous leishmaniasis. Faculty Reviews, 1–9. https://doi.org/10.12703/r/9-28
  • Kashif, M., & Subbarao, N. (2023). Identification of potential novel inhibitors against glutamine synthetase enzyme of Leishmania major by using computational tools. Journal of Biomolecular Structure & Dynamics, 41(23), 13914–13922. https://doi.org/10.1080/07391102.2023.2175382
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Laskowski, R., Rullmann, J. A., MacArthur, M., Kaptein, R., & Thornton, J. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486. https://doi.org/10.1007/BF00228148
  • Matadamas-Martínez, F., Hernández-Campos, A., Téllez-Valencia, A., Vázquez-Raygoza, A., Comparán-Alarcón, S., Yépez-Mulia, L., & Castillo, R. (2019). Leishmania mexicana trypanothione reductase inhibitors: computational and biological studies. Molecules (Basel, Switzerland), 24(18), 3216. https://doi.org/10.3390/molecules24183216
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Palić, S., Beijnen, J. H., & Dorlo, T. P. C. (2022). An update on the clinical pharmacology of miltefosine in the treatment of leishmaniasis. International Journal of Antimicrobial Agents, 59(1), 106459. https://doi.org/10.1016/j.ijantimicag.2021.106459
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Schrödinger, LLC. (2015). The {PyMOL} molecular graphics system, version∼1.8. Schrödinger, LLC.
  • Seeliger, D., & de Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422. https://doi.org/10.1007/s10822-010-9352-6
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539. https://doi.org/10.1038/msb.2011.75
  • Spinks, D., Shanks, E. J., Cleghorn, L. A. T., McElroy, S., Jones, D., James, D., Fairlamb, A. H., Frearson, J. A., Wyatt, P. G., & Gilbert, I. H. (2009). Investigation of trypanothione reductase as a drug target in Trypanosoma brucei. ChemMedChem, 4(12), 2060–2069. https://doi.org/10.1002/cmdc.200900262
  • Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V (2019). STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Torres-Guerrero, E., Quintanilla-Cedillo, M. R., Ruiz-Esmenjaud, J., & Arenas, R. (2017). Leishmaniasis: A review. F1000Research, 6, 750. https://doi.org/10.12688/f1000research.11120.1
  • Tovar, J., Wilkinson, S., Mottram, J. C., & Fairlamb, A. H. (1998). Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus. Molecular Microbiology, 29(2), 653–660. https://doi.org/10.1046/j.1365-2958.1998.00968.x
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Turcano, L., Torrente, E., Missineo, A., Andreini, M., Gramiccia, M., Di Muccio, T., Genovese, I., Fiorillo, A., Harper, S., Bresciani, A., Colotti, G., & Ilari, A. (2018). Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughput screening. PLoS Neglected Tropical Diseases, 12(11), e0006969. https://doi.org/10.1371/journal.pntd.0006969
  • Vanselow, N. R., & Bourret, J. C. (2012). Online interactive tutorials for creating graphs with excel 2007 or 2010. Behavior Analysis in Practice, 5(1), 40–46. https://doi.org/10.1007/BF03391816
  • Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2022). AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061
  • Vats, K., Tandon, R., Beg, M. A., Corrales, R. M., Yagoubat, A., Reyaz, E., Wani, T. H., Baig, M. S., Chaudhury, A., Krishnan, A., Puri, N., Salotra, P., Sterkers, Y., Selvapandiyan, A., & Roshanara. (2023). Interaction of novel proteins, centrin4 and protein of centriole in Leishmania parasite and their effects on the parasite growth. Biochimica et Biophysica Acta. Molecular Cell Research, 1870(3), 119416. https://doi.org/10.1016/j.bbamcr.2022.119416
  • Vázquez, K., Paulino, M., Salas, C. O., Zarate-Ramos, J. J., Vera, B., & Rivera, G. (2017). Trypanothione reductase: A target for the development of anti- trypanosoma cruzi drugs. Mini Reviews in Medicinal Chemistry, 17(11), 939–946. https://doi.org/10.2174/1389557517666170315145410
  • Wang, J., Zhang, L., Pan, X., Dai, B., Sun, Y., Li, C., & Zhang, J. (2017). Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents. Scientific Reports, 7(1), 45145. https://doi.org/10.1038/srep45145
  • Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics (Oxford, England), 25(9), 1189–1191. https://doi.org/10.1093/bioinformatics/btp033
  • Yang, J., & Zhang, Y. (2015). I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Research, 43(W1), W174–W181. https://doi.org/10.1093/nar/gkv342

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.