76
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Unleashing the binding interaction of chrysin-Cu(II) complex with the biomacromolecular targets: further studies of cell cytotoxicity and radical scavenging properties

, , , &
Received 05 Jun 2023, Accepted 14 Dec 2023, Published online: 08 Jan 2024

References

  • Abdollahpour, N., Soheili, V., Saberi, M. R., & Chamani, J. (2016). Investigation of the interaction between human serum albumin and two drugs as binary and ternary systems. European Journal of Drug Metabolism and Pharmacokinetics, 41(6), 705–721. https://doi.org/10.1007/s13318-015-0297-y
  • Afanas’ev, I. B., Ostrachovich, E. A., & Korkina, L. G. (1998). Effect of rutin and its copper complex on superoxide formation and lipid peroxidation in rat liver microsomes. FEBS Letters, 425(2), 256–258. https://doi.org/10.1016/S0014-5793(98)00244-0]
  • Ahmed, M. S., Ramesh, V., Nagaraja, V., Parish, J. H., & Hadi, S. M. (1994). Mode of binding of quercetin to DNA. Mutagenesis, 9(3), 193–197. https://doi.org/10.1093/mutage/9.3.193
  • Bagatolli, L. A., Kivatinitz, S. C., & Fidelio, G. D. (1996). Interaction of small ligands with human serum albumin iiia subdomain. How to determine the affinity constant using an easy steady state fluorescent method. Journal of Pharmaceutical Sciences, 85(10), 1131–1132. https://doi.org/10.1021/js960142k
  • Bagatolli, L. A., Kivatinitz, S. C., Aguilar, F., Soto, M. A., Sotomayor, P., & Fidelio, G. D. (1996). Two distinguishable fluorescent modes of 1-anilino-8-naphthalenesulfonate bound to human albumin. Journal of Fluorescence, 6(1), 33–40. https://doi.org/10.1007/BF00726724
  • Barik, A., Mishra, B., Kunwar, A., & Indira Priyadarsini, K. (2007). Interaction of curcumin with human serum albumin: Thermodynamic properties, fluorescence energy transfer and denaturation effects. Chemical Physics Letters, 436(1-3), 239–243. https://doi.org/10.1016/j.cplett.2007.01.006
  • Cannan, R. K., Kibrick, A., & Palmer, A. H. (1941). The amphoteric properties of egg albumin. Annals of the New York Academy of Sciences, 41(4), 243–266. https://doi.org/10.1111/j.1749-6632.1941.tb35241.x]
  • Carter, D. C., & Ho, J. X. (1994). Structure of serum albumin. (Advances in protein chemistry. (Vol. 45, pp. 153–203). Elsevier.
  • Caubet, J. C., & Wang, J. (2011). Current understanding of egg allergy [review]. Pediatric Clinics of North America, 58(2), 427–443, xi. https://doi.org/10.1016/j.pcl.2011.02.014
  • Chen, K. T. J., Anantha, M., Leung, A. W. Y., Kulkarni, J. A., Militao, G. G. C., Wehbe, M., Sutherland, B., Cullis, P. R., & Bally, M. B. (2020). Characterization of a liposomal copper(II)-quercetin formulation suitable for parenteral use. Drug Delivery and Translational Research, 10(1), 202–215. https://doi.org/10.1007/s13346-019-00674-7
  • Chen, X., Zhang, X., Chen, J., Yang, Q., Yang, L., Xu, D., Zhang, P., Wang, X., & Liu, J. (2017). Hinokitiol copper complex inhibits proteasomal deubiquitination and induces paraptosis-like cell death in human cancer cells. European Journal of Pharmacology, 815, 147–155. https://doi.org/10.1016/j.ejphar.2017.09.003
  • Dabrowiak, J. C. (2017). Metals in medicine. John Wiley & Sons.
  • Danesh, N., Navaee Sedighi, Z., Beigoli, S., Sharifi-Rad, A., Saberi, M. R., & Chamani, J. (2018). Determining the binding site and binding affinity of estradiol to human serum albumin and holo-transferrin: Fluorescence spectroscopic, isothermal titration calorimetry and molecular modeling approaches. Journal of Biomolecular Structure & Dynamics, 36(7), 1747–1763. https://doi.org/10.1080/07391102.2017.1333460
  • Dareini, M., Amiri Tehranizadeh, Z., Marjani, N., Taheri, R., Aslani-Firoozabadi, S., Talebi, A., NayebZadeh Eidgahi, N., Saberi, M. R., & Chamani, J. (2020). A novel view of the separate and simultaneous binding effects of docetaxel and anastrozole with calf thymus DNA: Experimental and in silico approaches. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 228, 117528. https://doi.org/10.1016/j.saa.2019.117528
  • de Lyra, A. C. F., dos Santos Silva, A. L., dos Santos, E. C. L., López, A. M. Q., da Silva, J. C. S., Figueiredo, I. M., & Santos, J. C. C. (2020). Molecular interaction of sulfonamides and ovalbumin, an allergenic egg protein, exploring biophysical, theoretical and biological studies. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 228, 117747. https://doi.org/10.1016/j.saa.2019.117747
  • Dömötör, O., de Almeida, R. F. M., Côrte-Real, L., Matos, C. P., Marques, F., Matos, A., Real, C., Kiss, T., Enyedy, É. A., Helena Garcia, M., & Tomaz, A. I. (2017). Studies on the mechanism of action of antitumor bis(aminophenolate) ruthenium(III) complexes. Journal of Inorganic Biochemistry, 168, 27–37. https://doi.org/10.1016/j.jinorgbio.2016.12.008
  • el Amrani, F. B.-A., Perelló, L., Borrás, J., & Torres, L. (2000). Development of novel DNA cleavage systems based on copper complexes. Synthesis and characterisation of Cu(II) complexes of hydroxyflavones. Metal-Based Drugs, 7(6), 365–370. https://doi.org/10.1155/MBD.2000.365
  • Fatfat, M., Merhi, R. A., Rahal, O., Stoyanovsky, D. A., Zaki, A., Haidar, H., Kagan, V. E., Gali-Muhtasib, H., & Machaca, K. (2014). Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species. BMC Cancer, 14(1), 527. https://doi.org/10.1186/1471-2407-14-527
  • Gaál, A., Orgován, G., Mihucz, V. G., Pape, I., Ingerle, D., Streli, C., & Szoboszlai, N. (2018). Metal transport capabilities of anticancer copper chelators. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 47, 79–88. https://doi.org/10.1016/j.jtemb.2018.01.011
  • Ghuman, J., Zunszain, P. A., Petitpas, I., Bhattacharya, A. A., Otagiri, M., & Curry, S. (2005). Structural basis of the drug-binding specificity of human serum albumin. Journal of Molecular Biology, 353(1), 38–52. https://doi.org/10.1016/j.jmb.2005.07.075
  • Goodsell, D. S., Morris, G. M., & Olson, A. J. (1996). Automated docking of flexible ligands: Applications of autodock. Journal of Molecular Recognition, 9(1), 1–5. https://doi.org/10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6
  • Greenfield, N. J., & Fasman, G. D. (1969). Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry, 8(10), 4108–4116. https://doi.org/10.1021/bi00838a031
  • Gu, Y.-Q., Zhong, Y.-J., Hu, M.-Q., Li, H.-Q., Yang, K., Dong, Q., Liang, H., & Chen, Z.-F. (2022). Terpyridine copper(ii) complexes as potential anticancer agents by inhibiting cell proliferation, blocking the cell cycle and inducing apoptosis in BEL-7402 cells. [Dalton Transactions (Cambridge, England: 2003), 51(5), 1968–1978. https://doi.org/10.1039/D1DT02988F
  • Halevas, E., Mitrakas, A., Mavroidi, B., Athanasiou, D., Gkika, P., Antoniou, K., Samaras, G., Lialiaris, E., Hatzidimitriou, A., Pantazaki, A., Koukourakis, M., Sagnou, M., Pelecanou, M., & Lialiaris, T. (2021). Structurally characterized copper-chrysin complexes display genotoxic and cytotoxic activity in human cells. Inorganica Chimica Acta, 515, 120062. https://doi.org/10.1016/j.ica.2020.120062
  • Han, X.-L., Mei, P., Liu, Y., Xiao, Q., Jiang, F.-L., & Li, R. (2009). Binding interaction of quinclorac with bovine serum albumin: A biophysical study. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 74(3), 781–787. https://doi.org/10.1016/j.saa.2009.08.018
  • Haugland, R. P. (1992). Handbook of fluorescent probes and research chemicals. Molecular Probes.
  • Hazra, S., & Suresh Kumar, G. (2014). Structural and thermodynamic studies on the interaction of iminium and alkanolamine forms of sanguinarine with hemoglobin. The Journal of Physical Chemistry. B, 118(14), 3771–3784. https://doi.org/10.1021/jp409764z
  • He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358(6383), 209–215. https://doi.org/10.1038/358209a0
  • Hoogenboezem, E. N., & Duvall, C. L. (2018). Harnessing albumin as a carrier for cancer therapies. Advanced Drug Delivery Reviews, 130, 73–89. https://doi.org/10.1016/j.addr.2018.07.011
  • Hu, H. Y., & Du, H. N. (2000). α-to-β Structural transformation of ovalbumin: Heat and pH effects. Journal of Protein Chemistry, 19(3), 177–183. https://doi.org/10.1023/A:1007099502179
  • Jacobsen, B., Hoffmann-Sommergruber, K., Have, T. T., Foss, N., Briza, P., Oberhuber, C., Radauer, C., Alessandri, S., Knulst, A. C., Fernandez-Rivas, M., & Barkholt, V. (2008). The panel of egg allergens, Gal d 1–Gal d 5: Their improved purification and characterization. Molecular Nutrition & Food Research, 52 Suppl 2(S2), S176–S185. https://doi.org/10.1002/mnfr.200700414
  • Johnson, A., Iffland-Mühlhaus, L., Northcote-Smith, J., Singh, K., Ortu, F., Apfel, U.-P., & Suntharalingam, K. (2022). A bioinspired redox-modulating copper(ii)–macrocyclic complex bearing non-steroidal anti-inflammatory drugs with anti-cancer stem cell activity [10.1039/D2DT00788F. Dalton Transactions (Cambridge, England: 2003), 51(15), 5904–5912. https://doi.org/10.1039/D2DT00788F
  • Kragh-Hansen, U. (1981). Molecular aspects of ligand binding to serum albumin. Pharmacological Reviews, 33(1), 17–53. https://www.ncbi.nlm.nih.gov/pubmed/7027277
  • L. Kremer, M. (1999). Mechanism of the Fenton reaction. Evidence for a new intermediate. Physical Chemistry Chemical Physics, 1(15), 3595–3605. https://doi.org/10.1039/a903915e
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy. Springer.
  • Liao, Y., Zhao, J., Bulek, K., Tang, F., Chen, X., Cai, G., Jia, S., Fox, P. L., Huang, E., Pizarro, T. T., Kalady, M. F., Jackson, M. W., Bao, S., Sen, G. C., Stark, G. R., Chang, C. J., & Li, X. (2020). Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nature Communications, 11(1), 900. https://doi.org/10.1038/s41467-020-14698-y
  • Liu, X., Chu, H., Cui, N., Wang, T., Dong, S., Cui, S., Dai, Y., & Wang, D. (2019). In vitro and in vivo evaluation of biotin-mediated PEGylated nanostructured lipid as carrier of disulfiram coupled with copper ion. Journal of Drug Delivery Science and Technology, 51, 651–661. https://doi.org/10.1016/j.jddst.2019.03.037
  • Liu, Y., Cai, Y., Ying, D., Fu, Y., Xiong, Y., & Le, X. (2018). Ovalbumin as a carrier to significantly enhance the aqueous solubility and photostability of curcumin: Interaction and binding mechanism study. International Journal of Biological Macromolecules, 116, 893–900. https://doi.org/10.1016/j.ijbiomac.2018.05.089
  • Lloyd, J. B. F. (1971). Synchronized excitation of fluorescence emission spectra. Nature Physical Science, 231(20), 64–65. https://doi.org/10.1038/physci231064a0
  • Marjani, N., Dareini, M., Asadzade-Lotfabad, M., Pejhan, M., Mokaberi, P., Amiri-Tehranizadeh, Z., Saberi, M. R., & Chamani, J. (2022). Evaluation of the binding effect and cytotoxicity assay of 2-Ethyl-5-(4-methylphenyl) pyramido pyrazole ophthalazine trione on calf thymus DNA: Spectroscopic, calorimetric, and molecular dynamics approaches. [Luminescence: The Journal of Biological and Chemical Luminescence, 37(2), 310–322. https://doi.org/10.1002/bio.4173
  • Martin, R., Henningsen, R. A., Suen, A., Apparsundaram, S., Leung, B., Jia, Z., Kondru, R. K., & Milla, M. E. (2008). Kinetic and thermodynamic assessment of binding of serotonin transporter inhibitors. The Journal of Pharmacology and Experimental Therapeutics, 327(3), 991–1000. https://doi.org/10.1124/jpet.108.142307
  • Martinez-Bulit, P., Garza-Ortíz, A., Mijangos, E., Barrón-Sosa, L., Sánchez-Bartéz, F., Gracia-Mora, I., Flores-Parra, A., Contreras, R., Reedijk, J., & Barba-Behrens, N. (2015). 2,6-Bis(2,6-diethylphenyliminomethyl)pyridine coordination compounds with cobalt(II), nickel(II), copper(II), and zinc(II): Synthesis, spectroscopic characterization, X-ray study and in vitro cytotoxicity. Journal of Inorganic Biochemistry, 142, 1–7. https://doi.org/10.1016/j.jinorgbio.2014.09.007
  • Maruyama, K., Awazu, S., Nishigori, H., & Iwatsuru, M. (1986). Effects of fatty acid on the specific drug-binding sites of human serum albumin. Chemical & Pharmaceutical Bulletin, 34(8), 3394–3402. https://doi.org/10.1248/cpb.34.3394
  • Maruyama, K., Harada, S., Nishigori, H., & Iwatsuru, M. (1984). Classification of drugs on the basis of bilirubin-displacing effect on human serum albumin. Chemical & Pharmaceutical Bulletin, 32(6), 2414–2420. https://doi.org/10.1248/cpb.32.2414
  • Mathews, N. A., & Kurup, M. R. P. (2022). Copper(II) complexes as novel anticancer drug: Synthesis, spectral studies, crystal structures, in silico molecular docking and cytotoxicity. Journal of Molecular Structure, 1258, 132672. https://doi.org/10.1016/j.molstruc.2022.132672
  • McWhinney, S. R., Goldberg, R. M., & McLeod, H. L. (2009). Platinum neurotoxicity pharmacogenetics. Molecular Cancer Therapeutics, 8(1), 10–16. https://doi.org/10.1158/1535-7163.MCT-08-0840
  • Metcalfe, C., & Thomas, J. A. (2003). Kinetically inert transition metal complexes that reversibly bind to DNA [10.1039/B201945K. Chemical Society Reviews, 32(4), 215–224. https://doi.org/10.1039/B201945K
  • Miller, J. N. (1984). Recent developments in fluorescence and chemiluminescence analysis. Plenary lecture [10.1039/AN9840900191. The Analyst, 109(3), 191–198. https://doi.org/10.1039/an9840900191
  • Mine, Y. (2007). Egg proteins and peptides in human health-chemistry, bioactivity and production. Current Pharmaceutical Design, 13(9), 875–884. https://dx.doi.org/10.2174/138161207780414278
  • Muñoz, V. A., Ferrari, G. V., Sancho, M. I., & Montaña, M. P. (2016). Spectroscopic and thermodynamic study of chrysin and quercetin complexes with Cu(II). Journal of Chemical & Engineering Data, 61(2), 987–995. https://doi.org/10.1021/acs.jced.5b00837
  • Okabe, N., & Hashizume, N. (1994). Drug binding properties of glycosylated human serum albumin as measured by fluorescence and circular dichroism. Biological & Pharmaceutical Bulletin, 17(1), 16–21. https://doi.org/10.1248/bpb.17.16
  • Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., & Gray, T. (1995). How to measure and predict the molar absorption coefficient of a protein. Protein Science: A Publication of the Protein Society, 4(11), 2411–2423. https://doi.org/10.1002/pro.5560041120
  • Panhwar, Q. K., Memon, S., & Bhanger, M. I. (2010). Synthesis, characterization, spectroscopic and antioxidation studies of Cu(II)–morin complex. Journal of Molecular Structure, 967(1-3), 47–53. https://doi.org/10.1016/j.molstruc.2009.12.037
  • Peters, T. Jr, (1995). All about albumin: Biochemistry, genetics, and medical applications. Academic press.
  • Pohl, F. M., Jovin, T. M., Baehr, W., & Holbrook, J. J. (1972). Ethidium bromide as a cooperative effector of a DNA structure. Proceedings of the National Academy of Sciences of the United States of America, 69(12), 3805–3809. https://doi.org/10.1073/pnas.69.12.3805
  • Pusz, J., & Nitka, B. (1997). Synthesis and physicochemical properties of the complexes of Co(II), Ni(II), and Cu(II) with chrysin. Microchemical Journal, 56(3), 373–381. https://doi.org/10.1006/mchj.1997.1449
  • Pusz, J., Nitka, B., Zielińska, A., & Wawer, I. (2000). Synthesis and physicochemical properties of the Al(III), Ga(III) and In(III) complexes with chrysin. Microchemical Journal, 65(3), 245–253. https://doi.org/10.1016/S0026-265X(00)00121-1
  • Qin, Q.-P., Meng, T., Tan, M.-X., Liu, Y.-C., Luo, X.-J., Zou, B.-Q., & Liang, H. (2018). Synthesis, crystal structure and biological evaluation of a new dasatinib copper(II) complex as telomerase inhibitor. European Journal of Medicinal Chemistry, 143, 1597–1603. https://doi.org/10.1016/j.ejmech.2017.10.058
  • Rahman, A, Hadi, S M, Parish, J H, Ainley, K, Shahabuddin, (1989). Strand scission in DNA induced by quercetin and Cu(II): Role of Cu(I) and oxygen free radicals. Carcinogenesis, 10(10), 1833–1839. https://doi.org/10.1093/carcin/10.10.1833
  • Razzak, M. A., Lee, J. E., & Choi, S. S. (2019). Structural insights into the binding behavior of isoflavonoid glabridin with human serum albumin. Food Hydrocolloids. 91, 290–300. https://doi.org/10.1016/j.foodhyd.2019.01.031
  • Reichmann, M. E., Rice, S. A., Thomas, C. A., & Doty, P. (1954). A further examination of the molecular weight and size of desoxypentose nucleic acid. Journal of the American Chemical Society, 76(11), 3047–3053. https://doi.org/10.1021/ja01640a067
  • Roy, A. S., Samanta, S. K., Ghosh, P., Tripathy, D. R., Ghosh, S. K., & Dasgupta, S. (2016a). Cell cytotoxicity and serum albumin binding capacity of the morin–Cu(ii) complex and its effect on deoxyribonucleic acid. Molecular bioSystems, 12(9), 2818–2833. https://doi.org/10.1039/C6MB00344C
  • Roy, A. S., Tripathy, D. R., Samanta, S., Ghosh, S. K., & Dasgupta, S. (2016b). DNA damaging, cell cytotoxicity and serum albumin binding efficacy of the rutin–Cu(ii) complex. [Molecular bioSystems, 12(5), 1687–1701. https://doi.org/10.1039/C6MB00161K https://doi.org/10.1039/C6MB00161K
  • S. Hernandes, M., & R.g. Britto, L. (2012). NADPH oxidase and neurodegeneration. Current Neuropharmacology, 10(4), 321–327. https://doi.org/10.2174/157015912804499483
  • Sahoo, B. K., Ghosh, K. S., Bera, R., & Dasgupta, S. (2008). Studies on the interaction of diacetylcurcumin with calf thymus-DNA. Chemical Physics, 351(1-3), 163–169. https://doi.org/10.1016/j.chemphys.2008.05.008
  • Sangeetha, S., & Murali, M. (2018). Non-covalent DNA binding, protein interaction, DNA cleavage and cytotoxicity of [Cu(quamol)Cl]·H2O. International Journal of Biological Macromolecules, 107(Pt B), 2501–2511. https://doi.org/10.1016/j.ijbiomac.2017.10.131
  • Sanner, M. F. (1999). Python: A programming language for software integration and development. Journal of Molecular Graphics & Modelling, 17(1), 57–61. http://europepmc.org/abstract/MED/10660911
  • Sarmah, S., Hazarika, U., Das, S. M., Quraishi, S., Bhatta, A., Belwal, V. K., Jha, A. N., & Roy, A. S. (2022). Deciphering the interactions of phytochemicals with ovalbumin, the major food allergen from egg-white: Spectroscopic and computational studies [. Luminescence: The Journal of Biological and Chemical Luminescence, 37(12), 2105–2122. https://doi.org/10.1002/bio.4401]
  • Sarmah, S., Pahari, S., Belwal, V. K., Jana, M., & Roy, A. S. (2020). Elucidation of molecular interaction of bioactive flavonoid luteolin with human serum albumin and its glycated analogue using multi-spectroscopic and computational studies. Journal of Molecular Liquids, 318, 114147. https://doi.org/10.1016/j.molliq.2020.114147
  • Sarmah, S., Pahari, S., Das, S., Belwal, V. K., Jana, M., & Singha Roy, A. (2021). Non-enzymatic glycation of human serum albumin modulates its binding efficacy towards bioactive flavonoid chrysin: A detailed study using multi-spectroscopic and computational methods. Journal of Biomolecular Structure & Dynamics, 39(2), 476–492. https://doi.org/10.1080/07391102.2019.1711196
  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
  • Selvaraj, S., Krishnaswamy, S., Devashya, V., Sethuraman, S., & Krishnan, U. M. (2011). Investigations on membrane perturbation by chrysin and its copper complex using self-assembled lipid bilayers. Langmuir: The ACS Journal of Surfaces and Colloids, 27(21), 13374–13382. https://doi.org/10.1021/la2029356
  • Shen, W.-Y., Jia, C.-P., Liao, L.-Y., Chen, L.-L., Hou, C., Liu, Y.-H., Liang, H., & Chen, Z.-F. (2022). Copper(II) complexes of halogenated quinoline Schiff base derivatives enabled cancer therapy through glutathione-assisted chemodynamic therapy and inhibition of autophagy flux. Journal of Medicinal Chemistry, 65(6), 5134–5148. https://doi.org/10.1021/acs.jmedchem.2c00133
  • Shi, S., Zhang, Y., Chen, X., & Peng, M. (2011). Investigation of flavonoids bearing different substituents on ring C and their Cu2+ complex binding with bovine serum albumin: structure–affinity relationship aspects. Journal of Agricultural and Food Chemistry, 59(19), 10761–10769. https://doi.org/10.1021/jf2027523
  • Singha Roy, A., Kumar Dinda, A., & Dasgupta, S. (2012). Study of the interaction between fisetin and human serum albumin: A biophysical approach. Protein & Peptide Letters, 19(6), 604–615. https://doi.org/10.2174/092986612800493995
  • Singha Roy, A., Tripathy, D. R., Ghosh, A. K., & Dasgupta, S. (2012). An alternate mode of binding of the polyphenol quercetin with serum albumins when complexed with Cu(II). Journal of Luminescence, 132(11), 2943–2951. https://doi.org/10.1016/j.jlumin.2012.05.018
  • Taheri, R., Hamzkanlu, N., Rezvani, Y., Niroumand, S., Samandar, F., Amiri-Tehranizadeh, Z., Saberi, M. R., & Chamani, J. (2022). Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: Multi spectroscopic, molecular dynamic and cellular approaches. Journal of Molecular Liquids, 368, 120826. https://doi.org/10.1016/j.molliq.2022.120826
  • Volarevic, V., Djokovic, B., Jankovic, M. G., Harrell, C. R., Fellabaum, C., Djonov, V., & Arsenijevic, N. (2019). Molecular mechanisms of cisplatin-induced nephrotoxicity: A balance on the knife edge between renoprotection and tumor toxicity. Journal of Biomedical Science, 26(1), 25. https://doi.org/10.1186/s12929-019-0518-9
  • Wheate, N. J., Walker, S., Craig, G. E., & Oun, R. (2010). The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Transactions (Cambridge, England: 2003), 39(35), 8113–8127. https://doi.org/10.1039/C0DT00292Ehttps://doi.org/10.1039/C0DT00292E
  • Wolfe, A., Shimer, G. H., Jr., & Meehan, T. (1987). Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry, 26(20), 6392–6396. https://doi.org/10.1021/bi00394a013
  • Wu, X., He, W., Yao, L., Zhang, H., Liu, Z., Wang, W., Ye, Y., & Cao, J. (2013). Characterization of binding interactions of (−)-Epigallocatechin-3-gallate from green tea and lipase. Journal of Agricultural and Food Chemistry, 61(37), 8829–8835. https://doi.org/10.1021/jf401779z
  • Zeeshan, M., Murugadas, A., Ghaskadbi, S., Rajendran, R. B., & Akbarsha, M. A. (2016). ROS dependent copper toxicity in Hydra-biochemical and molecular study. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 185-186, 1–12. https://doi.org/10.1016/j.cbpc.2016.02.008
  • Zeglis, B. M., Pierre, V. C., & Barton, J. K. (2007). Metallo-intercalators and metallo-insertors. Chemical Communications (Cambridge, England), (44), 4565–4579. https://doi.org/10.1039/B710949K https://doi.org/10.1039/B710949K
  • Zehra, S., Tabassum, S., & Arjmand, F. (2021). Biochemical pathways of copper complexes: Progress over the past 5 years. Drug Discovery Today. 26(4), 1086–1096. https://doi.org/10.1016/j.drudis.2021.01.015
  • Zeng, Y.-B., Yang, N., Liu, W.-S., & Tang, N. (2003). Synthesis, characterization and DNA-binding properties of La(III) complex of chrysin. Journal of Inorganic Biochemistry, 97(3), 258–264. https://doi.org/10.1016/S0162-0134(03)00313-1
  • Zhou, J., Wang, L., Wang, J., & Tang, N. (2001). Antioxidative and anti-tumour activities of solid quercetin metal(II) complexes. Transition Metal Chemistry, 26(1/2), 57–63. https://doi.org/10.1023/A:1007152927167
  • Zini, R., Athis, P. D., Barre, J., & Tillement, J. P. (1979). Binding of indomethacin to human serum albumin. Its non displacement by various agents, influence of free fatty acids and the unexpected effect of indomethacin on warfarin binding. Biochemical Pharmacology, 28(17), 2661–2665. https://doi.org/10.1016/0006-2952(79)90043-1
  • Zsila, F., Bikádi, Z., & Simonyi, M. (2004). Circular dichroism spectroscopic studies reveal pH dependent binding of curcumin in the minor groove of natural and synthetic nucleic acids. [Organic & Biomolecular Chemistry, 2(20), 2902–2910. https://doi.org/10.1039/B409724F https://doi.org/10.1039/B409724F

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.