153
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, molecular docking, and molecular dynamic simulation studies of new 1,3,4-thiadiazole derivatives as potential apoptosis inducers in A549 lung cancer cell line

, , , &
Received 02 Aug 2023, Accepted 22 Dec 2023, Published online: 02 Jan 2024

References

  • Abdel Rahman, D. E., & Mohamed, K. O. (2014). Synthesis of novel 1,3,4-thiadiazole analogues with expected anticancer activity. Der Pharma Chemica, 6, 323–335.
  • Abouzied, A. S., Al-Humaidi, J. Y., Bazaid, A. S., Qanash, H., Binsaleh, N. K., Alamri, A., Ibrahim, S. M., & Gomha, S. M. (2022). Synthesis, molecular docking study, and cytotoxicity evaluation of some novel 1,3,4-thiadiazole as well as 1,3-thiazole derivatives bearing a pyridine moiety. Molecules, 27(19), 6368. https://doi.org/10.3390/molecules27196368
  • Al-Sharabi, A. A., Evren, A. E., Sağlık, B. N., & Yurttaş, L. (2023). Synthesis, characterization, molecular docking and molecular dynamics simulations of novel 2,5-disubstituted-1,3,4-thiadiazole derivatives as potential cholinesterase/monoamine oxidase dual inhibitors for Alzheimer’s disease. Journal of Biomolecular Structure & Dynamics, 1–19. https://doi.org/10.1080/07391102.2023.2274967
  • Aydemir, N., & Bilaloğlu, R. (2003). Genotoxicity of two anticancer drugs, gemcitabine and topotecan, in mouse bone marrow in vivo. Mutation Research, 537(1), 43–51. https://doi.org/10.1016/s1383-5718(03)00049-4
  • Baburajeev, C. P., Mohan, C. D., Rangappa, S., Mason, D. J., Fuchs, J. E., Bender, A., Barash, U., Vlodavsky, I., Basappa, & Rangappa, K. S. (2017). Identification of novel class of triazolo-thiadiazoles as potent inhibitors of human heparanase and their anticancer activity. BMC Cancer, 17(1), 235. https://doi.org/10.1186/s12885-017-3214-8
  • Bhole, R. P., & Bhusari, K. P. (2010). Synthesis and antitumor activity of (4-hydroxyphenyl)[5-substituted alkyl/aryl)-2-thioxo-1,3,4-thiadiazol-3-yl]methanone and [(3,4-disubstituted)-1,3-thiazol-2ylidene]-4-hydroxybenzohydrazide. Medicinal Chemistry Research, 20(6), 695–704. https://doi.org/10.1007/s00044-010-9371-9
  • Bossy-Wetzel, E., Newmeyer, D. D., & Green, D. R. (1998). Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. The EMBO Journal, 17(1), 37–49. https://doi.org/10.1093/emboj/17.1.37
  • Buran, K. (2013). Novel anticancer thiazolidine molecules: Design, synthesis and evaluation [PhD thesis]. Yeditepe University, Institute of Health Sciences, Department of Pharmaceutical Chemistry.
  • Chou, J. Y., Lai, S. Y., Pan, S. L., Jow, G. M., Chern, J. W., & Guh, J. H. (2003). Investigation of anticancer mechanism of thiadiazole based compound in human non-small cell lung cancer A549 cells. Biochemical Pharmacology, 66(1), 115–124. https://doi.org/10.1016/s0006-2952(03)00254-5
  • Choy, D. S. J., Arandia, J., & Rosenbaum, I. (1967). Clinical evaluation of a new alkylating agent, Azetepa, in one hundred and twenty-five cases of malignant tumors. International Journal of Cancer, 2(2), 189–193. https://doi.org/10.1002/ijc.2910020213
  • Çiftçi, G. A., Temel, H. E., & Yurttaş, L. (2022). Apoptotic effect of novel bbenzimidazole derivatives bearing pyridyl/pyrimidinyl piperazine moiety. Anti-Cancer Agents in Medicinal Chemistry, 22(9), 1780–1792. https://doi.org/10.2174/1871520621666210708095110
  • Dawood, K. M., & Gomha, S. M. (2015). Synthesis and anti-cancer activity of 1,3,4-thiadiazole and 1,3-thiazole derivatives having 1,3,4-oxadiazole moiety. Journal of Heterocyclic Chemistry, 52(5), 1400–1405. https://doi.org/10.1002/jhet.2250
  • De Iuliis, F., Taglieri, L., Salerno, G., Giuffrida, A., Milana, B., Giantulli, S., Carradori, S., Silvestri, I., & Scarpa, S. (2016). The kinesin Eg5 inhibitor K858 induces apoptosis but also survivin-related chemoresistance in breast cancer cells. Investigational New Drugs, 34(4), 399–406. https://doi.org/10.1007/s10637-016-0345-8
  • De, S. K., Chen, V., Stebbins, J. L., Chen, L., Cellitti, J. F., Machleidt, T., Barile, E., Riel-Mehan, M., Dahl, D., Yang, L., Emdadi, A., Murphy, R., Pellecchia, M., & Shafiee, A. (2009). Selective leishmanicidal effect of 1,3,4-thiadiazole derivatives and possible mechanism of action against Leishmania species. Experimental Parasitology, 121(4), 323–330.
  • Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35(4), 495–516. https://doi.org/10.1080/01926230701320337
  • Evren, A. E., Nuha, D., & Yurttaş, L. (2023). Focusing on the moderately active compound (MAC) in the design and development of strategies to optimize the apoptotic effect by molecular mechanics techniques. European Journal of Life Sciences, 1(3), 118–126. https://doi.org/10.55971/EJLS.1209591
  • Evren, A. E., Nuha, D., Dawbaa, S., Karaduman, A. B., Sağlik, B. N., & Yurttaş, L. (2023). Novel oxadiazole-thiadiazole derivatives: Synthesis, biological evaluation, and in silico studies. Journal of Biomolecular Structure & Dynamics, 1–13. https://doi.org/10.1080/07391102.2023.2247087
  • Fischer, M., Kuckenberg, M., Kastilan, R., Muth, J., & Gebhar, C. (2021). Novel in vitro inhibitory functions of potato tuber proteinaceous inhibitors. Molecular Genetics and Genomics, 290(1), 387–398. https://doi.org/10.1007/s00438-014-0906-5
  • Gomha, S. M., Kheder, N. A., Abdelaziz, M. R., Mabkhot, Y. N., & Alhajoj, A. M. (2017). A facile synthesis and anticancer activity of some novel thiazoles carrying 1,3,4‑thiadiazole moiety. Chemistry Central Journal, 11, 1–9.
  • Gupta, S. (2004). Matrix metalloprotease (MMP) inhibitors and their application in cosmetic and pharmaceutical composition (US Patent Application 20060074108).
  • Güzel, E., Acar Çevik, U., Evren, A. E., Bostancı, H. E., Gül, Ü. D., Kayış, U., Özkay, Y., & Kaplancıklı, Z. A. (2023). Synthesis of benzimidazole-1,2,4-triazole derivatives as potential antifungal agents targeting 14α-demethylase. ACS Omega, 8(4), 4369–4384. https://doi.org/10.1021/acsomega.2c07755
  • Haider, S., Alam, M. S., & Hamid, H. (2015). Mini-review. 1,3,4-Thiadiazoles: A potent multi targeted pharmacological scaffold. European Journal of Medicinal Chemistry, 92, 156–177. https://doi.org/10.1016/j.ejmech.2014.12.035
  • Hamama, W. S., Gouda, M. A., Badr, M. H., & Zoorob, H. H. (2013). Synthesis, antioxidant, and antitumor evaluation of certain new N-substituted-2-amino-1,3,4-thiadiazoles. Medicinal Chemistry Research, 22(8), 3556–3565. https://doi.org/10.1007/s00044-012-0336-z
  • Hassan, F., Hairunisa, N., Mohammed, S. A., & Yousif, E. A. (2017). Study on antitumor effect of 1,3,4-thiadiazole derivatives in prostate and breast cancer cell lines (in vitro). Preprints.org, 2017030053.
  • Hu, Y., Li, C. Y., Wang, X. M., Yang, Y. H., & Zhu, H. L. (2014). 1,3,4-Thiadiazole: Synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chemical Reviews, 114(10), 5572–5610. https://doi.org/10.1021/cr400131u
  • Jain, A. K., Sharma, S., Vaidya, A., Ravichandran, V., & Agrawal, R. K. (2013). 1,3,4-Thiadiazole and its derivatives: A review on recent progress in biological activities. Chemical Biology & Drug Design, 81(5), 557–576. https://doi.org/10.1111/cbdd.12125
  • Janowska, S., Paneth, A., & Wujec, M. (2020). Review. Cytotoxic properties of 1,3,4-thiadiazole derivatives—A review. Molecules, 25(18), 4309. https://doi.org/10.3390/molecules25184309
  • Joseph, A., Shah, C. S., Kumar, S. S., Alex, A. T., Maliyakkal, N., Moorkoth, S., & Mathew, J. E. (2013). Synthesis, in vitro anticancer and antioxidant activity of thiadiazole substituted thiazolidin-4-ones. Acta Pharmaceutica, 63(3), 397–408. https://doi.org/10.2478/acph-2013-0028
  • Juszczak, M., Matysiak, J., Szeliga, M., Pożarowski, P., Niewiadomy, A., Albrecht, J., & Rzeski, W. (2012). 2-Amino-1,3,4-thiadiazole derivative (FABT) inhibits the extracellular signal-regulated kinase pathway and induces cell cycle arrest in human non-small lung carcinoma cells. Bioorganic & Medicinal Chemistry Letters, 22(17), 5466–5469. https://doi.org/10.1016/j.bmcl.2012.07.036
  • Kaya Çavuşoğlu, B., Yurttaş, L., & Cantürk, Z. (2018). The synthesis, antifungal and apoptotic effects of triazole-oxadiazoles against Candida species. European Journal of Medicinal Chemistry, 144, 255–261. https://doi.org/10.1016/j.ejmech.2017.12.020
  • Koceva-Chyła, A., Jedrzejczak, M., Skierski, J., Kania, K., & Jóźwiak, Z. (2005). Mechanisms of induction of apoptosis by anthraquinone anticancer drugs aclarubicin and mitoxantrone in comparison with doxorubicin: Relation to drug cytotoxicity and caspase-3 activation. Apoptosis, 10(6), 1497–1514. https://doi.org/10.1007/s10495-005-1540-9
  • Kumar Ganta, K., Mandal, A., & Chaubey, B. (2017). Depolarization of mitochondrial membrane potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz induced cytotoxicity. Cell Biology and Toxicology, 33(1), 69–82. https://doi.org/10.1007/s10565-016-9362-9
  • Kumar, D., Kumar, H., Kumar, V., Deep, A., Sharma, A., Marwaha, M. G., & Marwaha, R. K. (2023). Mechanism-based approaches of 1,3,4 thiadiazole scaffolds as potent enzyme inhibitors for cytotoxicity and antiviral activity. Medicine in Drug Discovery, 17, 100150. https://doi.org/10.1016/j.medidd.2022.100150
  • Kumar, D., Kumar, N. M., Chang, K., & Shah, K. (2010). Synthesis and anticancer activity of 5-(3-indolyl)-1,3,4-thiadiazoles. European Journal of Medicinal Chemistry, 45(10), 4664–4668. https://doi.org/10.1016/j.ejmech.2010.07.023
  • Kumar, N., Sharma, C. S., Singh, H. P., & Singh Chauhan, L. (2017). Synthesis and in vitro evaluation of novel isatin incorporated thiadiazole hybrids as potential anti-breast cancer agents. Tropical Journal of Pharmaceutical Research, 16(8), 1957–1963. https://doi.org/10.4314/tjpr.v16i8.28
  • Kumar, V., Abbas, A. K., Obbins, A. R., & Cotran, J. C. (2015). Pathologic basis of disease (9th ed.). Elsevier Saunders.
  • Lelyukh, M., Adamchuk, S., Harkov, S., Chaban, I., Demchuk, I., Shelepeten, L., & Chaban, T. (2018). Synthetic approaches, chemical modification and biological activity of non-condensed 1,3,4-thiadiazole derivatives: A review. Pharmacia, 65, 72–88.
  • Li, W. Y., Song, Y., Chen, H. B., & Yang, W. L. (2014). Synthesis of 2-amino-5-mercapto-1,3,4-thiadiazole derivatives. Heterocyclic Communications, 20(1), 33–36. https://doi.org/10.1515/hc-2013-0212
  • Li, Y., Geng, J., Liu, Y., Yu, S., & Zhao, G. (2013). Thiadiazole—A promising structure in medicinal chemistry. ChemMedChem, 8(1), 27–41. https://doi.org/10.1002/cmdc.201200355
  • Lowe, S. W., & Lin, A. W. (2000). Apoptosis in cancer. Carcinogenesis, 21(3), 485–495. https://doi.org/10.1093/carcin/21.3.485
  • Luo, Z., Chen, B., He, S., Shi, Y., Liu, Y., & Li, C. (2012). Synthesis and antitumor-evaluation of 1,3,4-thiadiazole-containing benzisoselenazolone derivatives. Bioorganic & Medicinal Chemistry Letters, 22(9), 3191–3193. https://doi.org/10.1016/j.bmcl.2012.03.043
  • Marganakop, S. B., Kamble, R. R., Taj, T., & Kariduraganvar, M. Y. (2010). An efficient one-pot cyclization of quinoline thiosemicarbazones to quinolines derivatized with 1,3,4-thiadiazole as anticancer and anti-tubercular agents. Medicinal Chemistry Research, 21(2), 185–191. https://doi.org/10.1007/s00044-010-9522-z
  • Matysiak, J. (2006). Evaluation of antiproliferative effect in vitro of some 2-amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole derivatives. Chemical & Pharmaceutical Bulletin, 54(7), 988–991. https://doi.org/10.1248/cpb.54.988
  • Matysiak, J. (2015). Biological and pharmacological activities of 1,3,4-thiadiazole based compounds. Mini Reviews in Medicinal Chemistry, 15(9), 762–775. https://doi.org/10.2174/1389557515666150519104057
  • Matysiak, J., & Opolski, A. (2006). Synthesis and antiproliferative activity of N-substituted 2-amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles. Bioorganic & Medicinal Chemistry, 14(13), 4483–4489. https://doi.org/10.1016/j.bmc.2006.02.027
  • McComb, S., Chan, P. K., Guinot, A., Hartmannsdottir, H., Jenni, S., Dobay, M. P., Bourquin, J. P., & Bornhauser, B. C. (2019). Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector caspase-3 or -7. Science Advances, 5(7), eaau9433. https://doi.org/10.1126/sciadv.aau9433
  • Miyamoto, K., Koshiura, R., Mori, M., Yokoi, H., Mori, C., Hasegawa, T., & Takatori, K. (1985). Antitumor activity of 5-substituted 2-acylamino-1,3,4-thiadiazoles against transplantable rodent tumors. Chemical & Pharmaceutical Bulletin, 33(11), 5126–5129. https://doi.org/10.1248/cpb.33.5126
  • Mondal, S., Adhikari, N., Banerjee, S., Amin, S. A., & Jha, T. (2020). Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. European Journal of Medicinal Chemistry, 194, 112260. https://doi.org/10.1016/j.ejmech.2020.112260
  • Naskar, A., Singha, T., Guria, T., Singh, J., Kumar, A. B., & Kumar Maity, T. (2015). Synthesis, characterization and evaluation of anticancer activity of some new Schiff bases of 1,3,4-thiadiazole derivatives. International Journal of Pharmacy and Pharmaceutical Sciences, 7, 392–402.
  • Nelson, J. A., Rose, L. M., & Bennett, L. L. (1977). Mechanism of action of 2-amino-I, 3,4-thiadiazole (NSC 4728). Cancer Research, 37(1), 182–187.
  • Osmaniye, D., Evren, A. E., Karaca, Ş., Özkay, Y., & Kaplancıklı, Z. A. (2023). Novel thiadiazol derivatives; design, synthesis, biological activity, molecular docking and molecular dynamics. Journal of Molecular Structure, 1272, 134171. https://doi.org/10.1016/j.molstruc.2022.134171
  • Özdemir, A., Sever, B., Altıntop, M. D., Temel, H. E., Atlı, Ö., Baysal, M., & Demirci, F. (2017). Synthesis and evaluation of new oxadiazole, thiadiazole, and triazole derivatives as potential anticancer agents targeting MMP-9. Molecules, 22(7), 1109. https://doi.org/10.3390/molecules22071109
  • Patarroyo, S. J. H. (2013). Chapter IV: Apoptosis and activation-induced cell death. In J. Rudner (Ed.), Apoptosis (1st ed., pp. 73–94). InTech.
  • Pfeffer, C. M., & Singh, A. T. K. (2018). Apoptosis: A target for anticancer therapy. International Journal of Molecular Sciences, 19(2), 448. https://doi.org/10.3390/ijms19020448
  • Pistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A., & D'Orazi, G. (2016). Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 8(4), 603–619. https://doi.org/10.18632/aging.100934
  • Polkam, N., Rayam, P., Anireddy, J. S., Yennam, S., Anantaraju, H. S., Dharmarajan, S., Perumal, Y., Kotapalli, S. S., Ummanni, R., & Balasubramanian, S. (2015). Synthesis, in vitro anticancer and antimycobacterial evaluation of new 5-(2,5-dimethoxyphenyl)-1,3,4-thiadiazole-2-amino derivatives. Bioorganic & Medicinal Chemistry Letters, 25(7), 1398–1402. https://doi.org/10.1016/j.bmcl.2015.02.052
  • Porter, A. G., & Jänicke, R. U. (1999). Emerging roles of caspase-3 in apoptosis. Cell Death and Differentiation, 6(2), 99–104. https://doi.org/10.1038/sj.cdd.4400476
  • Prasad, M. G., Lakshmi, C. V., Katari, N. K., & Pal, M. (2020). Lemon Juice as a biocatalyst under ultrasound irradiation: Synthesis and pharmacological evaluation of 2-amino 1,3,4-thiadiazoles. Anti-Cancer Agents in Medicinal Chemistry, 20(11), 1379–1386. https://doi.org/10.2174/1871520620666200409143513
  • Raj, V., Rai, A., Singh, A. K., Keshari, A. K., Trivedi, P., Ghosh, B., Kumar, U., Kumar, D., & Saha, S. (2018). Discovery of novel 2-amino-5-(substituted)-1,3,4-thiadiazole derivatives: New utilities for colon cancer treatment. Anti-Cancer Agents in Medicinal Chemistry, 18(5), 719–738. https://doi.org/10.2174/1871520617666170419122916
  • Rzeski, W., Matysiak, J., & Kandefer-Szerszeń, M. (2007). Anticancer, neuroprotective activities and computational studies of 2-amino-1,3,4-thiadiazole based compound. Bioorganic & Medicinal Chemistry, 15(9), 3201–3207. https://doi.org/10.1016/j.bmc.2007.02.041
  • Sancak, K., Ünver, Y., & Er, M. (2007). Synthesis of 2-acylamino, 2-aroylamino and ethoxycarbonyl imino-1,3,4-thiadiazoles as antitumor agents. Turkish Journal of Chemistry, 31, 125–134.
  • Schrodinger Maestro (2016). Version 10.6, LLC. QikProp, version 4.8. Schrödinger, LLC.
  • Scozzafava, A., & Supuran, C. T. (2002). Protease inhibitors: Synthesis of matrix metalloproteinase and bacterial collagenase inhibitors incorporating 5-amino-2mercapto-1,3,4-thiadiazole zinc binding functions. Bioorganic & Medicinal Chemistry Letters, 12(19), 2667–2672. https://doi.org/10.1016/s0960-894x(02)00564-4
  • Senff-Ribeiro, A., Echevarria, A., Silva, E. F., Franco, C. R. C., Veiga, S. S., & Oliveira, M. B. M. (2004). Cytotoxic effect of a new 1,3,4-thiadiazolium mesoionic compound (MI-D) on cell lines of human melanoma. British Journal of Cancer, 91(2), 297–304. https://doi.org/10.1038/sj.bjc.6601946
  • Sivandzade, F., Bhalerao, A., & Cucullo, L. (2019). Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protocol, 9, e3128.
  • Swiss Institute of Bioinformatics (2023). Retrieved from http://www.swissadme.ch/
  • Szeliga, M. (2000). Thiadiazole derivatives as anticancer agents. Pharmacological Reports, 72(5), 1079–1100. https://doi.org/10.1007/s43440-020-00154-7
  • Upadhyay, P. K., & Mishra, P. (2017). Synthesis, antimicrobial and anticancer activities of 5-(4-substituted-phenyl)-1,3,4-thiadiazole-2-amines. Rasayan Journal of Chemistry, 10, 254–262.
  • Vaux, D. L., Haecker, G., & Strasser, A. (1994). An evolutionary perspective on apoptosis. Cell, 76(5), 777–779. https://doi.org/10.1016/0092-8674(94)90350-6
  • Ye, X. S., Fan, L., Van Horn, R. D., Nakai, R., Ohta, Y., Akinaga, S., Murakata, C., Yamashita, Y., Yin, T., Credille, K. M., Donoho, G. P., Merzoug, F. F., Li, H., Aggarwal, A., Blanchard, K., & Westin, E. H. (2015). A novel Eg5 inhibitor (LY2523355) causes mitotic arrest and apoptosis in cancer cells and shows potent antitumor activity in xenograft tumor models. Molecular Cancer Therapeutics, 14(11), 2463–2472. https://doi.org/10.1158/1535-7163.MCT-15-0241
  • Yurttaş, L., Evren, A. E., Kubilay, A., & Temel, H. E. (2021). Synthesis of new 1,2,4-triazole derivatives and investigation of their matrix metalloproteinase-9 (MMP-9) inhibition properties. Acta Pharmaceutica Sciencia, 59(2), 215–232.
  • Yurttaş, L., Evren, A. E., Kubilay, A., Temel, H. E., & Çiftçi, G. A. (2020). 3,4,5-Trisubstituted-1,2,4-triazole derivatives as antiproliferative agents: Synthesis, in vitro evaluation and molecular modelling. Letters in Drug Design & Discovery, 17(12), 1502–1515. https://doi.org/10.2174/1570180817999200712190831
  • Yurttaş, L., Özkay, Y., Akalın-Çiftçi, G., & Ulusoylar-Yıldırım, Ş. (2014). Synthesis and anticancer activity evaluation of N-[4-(2-methylthiazol-4-yl)phenyl]acetamide derivatives containing (benz)azole moiety. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(2), 175–184. https://doi.org/10.3109/14756366.2013.763253
  • Yurttaş, L., Temel, H. E., Aksoy, M. O., Bülbül, E. F., & Çiftçi, G. A. (2022). New chromanone derivatives containing thiazoles: Synthesis and antitumor activity evaluation on A549 lung cancer cell line. Drug Development Research, 83(2), 470–484. https://doi.org/10.1002/ddr.21879
  • Zheng, K. B., He, J., & Zhang, J. (2008). Synthesis and antitumor activity of N1-acetylamino-(5-alkyl/aryl-1,3,4-thiadiazole-2-yl)-5-fluorouracil derivatives. Chinese Chemical Letters, 19(11), 1281–1284. https://doi.org/10.1016/j.cclet.2008.09.021
  • Zhu, M. L., Wang, C. Y., Xu, C. M., Bi, W. P., & Zhou, X. Y. (2017). Evaluation of 6-chloro-N-[3,4-disubstituted-1,3-thiazol-2(3H)-ylidene]-1,3-benzothiazol-2-amine using drug design concept for their targeted activity against colon cancer cell lines HCT-116, HCT15, and HT29. Medical Science Monitor, 23, 1146–1155. https://doi.org/10.12659/msm.899646

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.