175
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In silico approaches for predicting natural compounds with therapeutic potential and vaccine candidates against Streptococcus equi

ORCID Icon, ORCID Icon, , , , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 27 Feb 2023, Accepted 26 Dec 2023, Published online: 18 Jan 2024

References

  • Almagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne, G., & Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 37(4), 420–423. https://doi.org/10.1038/s41587-019-0036-z
  • Barh, D., Barve, N., Gupta, K., Chandra, S., Jain, N., Tiwari, S., Leon-Sicairos, N., Canizalez-Roman, A., dos Santos, A. R., Hassan, S. S., Almeida, S., Ramos, R. T. J., de Abreu, V. A. C., Carneiro, A. R., Soares, S. D C., Castro, T. L. D P., Miyoshi, A., Silva, A., Kumar, A., … Azevedo, V. (2013). Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in Vibrio cholerae targeted by piper betel derived compounds. PloS One, 8(1), e52773. https://doi.org/10.1371/journal.pone.0052773
  • Barh, D., Tiwari, S., Jain, N., Ali, A., Santos, A. R., Misra, A. N., Azevedo, V., & Kumar, A. (2011). In silico subtractive genomics for target identification in human bacterial pathogens. Drug Development Research, 72(2), 162–177. https://doi.org/10.1002/ddr.20413
  • Barinov, A., Loux, V., Hammani, A., Nicolas, P., Langella, P., Ehrlich, D., Maguin, E., & van de Guchte, M. (2009). Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram-positive bacteria. Proteomics, 9(1), 61–73. https://doi.org/10.1002/pmic.200800195
  • Benson, T. E., Harris, M. S., Choi, G. H., Cialdella, J. I., Herberg, J. T., Martin, J. P., & Baldwin, E. T. (2001). A structural variation for MurB: X-ray crystal structure of Staphylococcus aureus UDP-N-acetylenolpyruvylglucosamine reductase (MurB). Biochemistry, 40(8), 2340–2350. https://doi.org/10.1021/bi002162d
  • Beres, S. B., Sesso, R., Pinto, S. W. L., Hoe, N. P., Porcella, S. F., DeLeo, F. R., & Musser, J. M. (2008). Genome sequence of a lancefield group C Streptococcus zooepidemicus strain causing epidemic nephritis: New information about an old disease. PloS One, 3(8), e3026. https://doi.org/10.1371/journal.pone.0003026
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Biswas, S., & Biswas, I. (2014). A Conserved streptococcal membrane protein, LsrS, exhibits a receptor-like function for lantibiotics. Journal of Bacteriology, 196(8), 1578–1587. https://doi.org/10.1128/JB.00028-14
  • Boyle, A. G., Timoney, J. F., Newton, J. R., Hines, M. T., Waller, A. S., & Buchanan, B. R. (2018). Streptococcus equi infections in horses: Guidelines for treatment, control, and prevention of strangles—Revised consensus statement. Journal of Veterinary Internal Medicine, 32(2), 633–647. https://doi.org/10.1111/jvim.15043
  • Capriles, P. V. S. Z., Guimarães, A. C. R., Otto, T. D., Miranda, A. B., Dardenne, L. E., & Degrave, W. M. (2010). Structural modelling and comparative analysis of homologous, analogous and specific proteins from Trypanosoma cruzi versus Homo sapiens: Putative drug targets for chagas’ disease treatment. BMC Genomics, 11(1), 610. https://doi.org/10.1186/1471-2164-11-610
  • Cockerell, S. R., Rutkovsky, A. C., Zayner, J. P., Cooper, R. E., Porter, L. R., Pendergraft, S. S., Parker, Z. M., McGinnis, M. W., & Karatan, E. (2014). Vibrio cholerae NspS, a homologue of ABC-type periplasmic solute binding proteins, facilitates transduction of polyamine signals independent of their transport. Microbiology, 160(Pt 5), 832–843. https://doi.org/10.1099/mic.0.075903-0
  • Das, S., Kanamoto, T., Ge, X., Xu, P., Unoki, T., Munro, C. L., & Kitten, T. (2009). Contribution of lipoproteins and lipoprotein processing to endocarditis virulence in Streptococcus sanguinis. Journal of Bacteriology, 191(13), 4166–4179. https://doi.org/10.1128/JB.01739-08
  • Davidson, A. L., Dassa, E., Orelle, C., & Chen, J. (2008). Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiology and Molecular Biology Reviews: MMBR, 72(2), 317–364, table of contents. https://doi.org/10.1128/mmbr.00031-07
  • Debroy, S., Saldaña, M., Travisany, D., Montano, A., Galloway-Peña, J., Horstmann, N., Yao, H., González, M., Maass, A., Latorre, M., & Shelburne, S. A. (2016). A multi-serotype approach clarifies the catabolite control protein A regulon in the major human pathogen group A streptococcus. Scientific Reports, 6(1), 32442. https://doi.org/10.1038/srep32442
  • Del Tordello, E., Rappuoli, R., & Delany, I. (2017). Reverse vaccinology: Exploiting genomes for vaccine design. In Human vaccines: Emerging technologies in design and development. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802302-0.00002-9
  • Duffee, L. R., Stefanovski, D., Boston, R. C., & Boyle, A. G. (2015). Predictor variables for and complications associated with streptococcus equi subsp equi infection in horses. Journal of the American Veterinary Medical Association, 247(10), 1161–1168. https://doi.org/10.2460/javma.247.10.1161
  • Duffield, M., Cooper, I., McAlister, E., Bayliss, M., Ford, D., & Oyston, P. (2010). Predicting conserved essential genes in bacteria: In silico identification of putative drug targets. Molecular bioSystems, 6(12), 2482–2489. https://doi.org/10.1039/c0mb00001a
  • Emms, D. M., & Kelly, S. (2015). OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology, 16(1), 157. https://doi.org/10.1186/s13059-015-0721-2
  • Ferretti, J. J., McShan, W. M., Ajdic, D., Savic, D. J., Savic, G., Lyon, K., Primeaux, C., Sezate, S., Suvorov, A. N., Kenton, S., Lai, H. S., Lin, S. P., Qian, Y., Jia, H. G., Najar, F. Z., Ren, Q., Zhu, H., Song, L., White, J., … McLaughlin, R. (2001). Complete genome sequence of an M1 strain of streptococcus pyogenes. Proceedings of the National Academy of Sciences of the United States of America, 98(8), 4658–4663. https://doi.org/10.1073/pnas.071559398
  • Hasegawa, T., Torii, K., Hashikawa, S., Iinuma, Y., & Ohta, M. (2002). Cloning and characterization of two novel DNases from Streptococcus pyogenes. Archives of Microbiology, 177(6), 451–456. https://doi.org/10.1007/s00203-002-0412-8
  • He, Y., Xiang, Z., & Mobley, H. L. T. (2010). Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development. Journal of Biomedicine & Biotechnology, 2010, 297505–297515. https://doi.org/10.1155/2010/297505
  • Hyyryläinen, H. L., Marciniak, B. C., Dahncke, K., Pietiäinen, M., Courtin, P., Vitikainen, M., Seppala, R., Otto, A., Becher, D., Chapot-Chartier, M. P., Kuipers, O. P., & Kontinen, V. P. (2010). Penicillin-binding protein folding is dependent on the PrsA peptidyl-prolyl cis-trans isomerase in Bacillus subtilis. Molecular Microbiology, 77(1), 108–127. https://doi.org/10.1111/j.1365-2958.2010.07188.x
  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC – A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177–182. https://doi.org/10.1021/ci049714+
  • Jaiswal, A. K., Tiwari, S., Jamal, S. B., Barh, D., Azevedo, V., & Soares, S. C. (2017). An in silico identification of common putative vaccine candidates against treponema pallidum: A reverse vaccinology and subtractive genomics based approach. International Journal of Molecular Sciences, 18(2), 402. https://doi.org/10.3390/ijms18020402
  • Jo, S., Cheng, X., Islam, S. M., Huang, L., Rui, H., Zhu, A., Lee, H. S., Qi, Y., Han, W., Vanommeslaeghe, K., MacKerell, A. D., Roux, B., & Im, W. (2014). CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues. Advances in Protein Chemistry and Structural Biology, 96(1), 235–265. https://doi.org/10.1016/bs.apcsb.2014.06.002
  • Krogh, A., Larsson, B., Von Heijne, G., & Sonnhammer, E. L. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315
  • Lemkul, J. (2019). From proteins to perturbed hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0]. Living Journal of Computational Molecular Science, 1(1), 1–53. https://doi.org/10.33011/livecoms.1.1.5068
  • Ma, F., Guo, X., & Fan, H. (2017). Extracellular nucleases of streptococcus equi subsp. zooepidemicus degrade neutrophil extracellular traps and impair macrophage activity of the host. Applied and Environmental Microbiology, 83(2), 1–15. https://doi.org/10.1128/AEM.02468-16
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2010). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256.AutoDock4
  • Paluscio, E., Watson, M. E., & Caparon, M. G. (2018). CcpA coordinates growth/damage balance for Streptococcus pyogenes pathogenesis. Scientific Reports, 8(1), 14254. https://doi.org/10.1038/s41598-018-32558-0
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pisoni, G., Zadoks, R. N., Vimercati, C., Locatelli, C., Zanoni, M. G., & Moroni, P. (2009). Epidemiological investigation of Streptococcus equisubspecies zooepidemicus involved in clinical mastitis in dairy goats. Journal of Dairy Science, 92(3), 943–951. https://doi.org/10.3168/jds.2008-1548
  • Príncipe, A., Jofré, E., Alvarez, F., & Mori, G. (2009). Role of a serine-type d-alanyl-d-alanine carboxypeptidase on the survival of Ochrobactrum sp. 11a under ionic and hyperosmotic stress. FEMS Microbiology Letters, 295(2), 261–273. https://doi.org/10.1111/j.1574-6968.2009.01604.x
  • Pucci, M. J., Discotto, L. F., & Dougherty, T. J. (1992). Cloning and identification of the Escherichia coli murB DNA sequence, which encodes UDP-N-acetylenolpyruvoylglucosamine reductase. Journal of Bacteriology, 174(5), 1690–1693. https://doi.org/10.1128/jb.174.5.1690-1693.1992
  • Rappuoli, R. (2000). Reverse vaccinology. Current Opinion in Microbiology, 3(5), 445–450. https://doi.org/10.1016/s1369-5274(00)00119-3
  • Rodrigues, T. C. V., Jaiswal, A. K., De Sarom, A., Oliveira, L. D. C., Oliveira, C. J. F., Ghosh, P., Tiwari, S., Miranda, F. M., Benevides, L. D. J., Azevedo, V. A. D. C., & Soares, S. D. C. (2019). Reverse vaccinology and subtractive genomics reveal new therapeutic targets against Mycoplasma pneumoniae: A causative agent of pneumonia. Royal Society Open Science, 6(7), 190907. https://doi.org/10.1098/rsos.190907
  • Rowland, L. S., Errington, J., & Wake, R. (1995). The Bacillus subtilis cell-division 135–137° region contains an essential orf with significant similarity to murB and a dispensable sbp gene. Gene, 164(1), 113–116. https://doi.org/10.1016/0378-1119(95)00467-K
  • Sanad, S. M. H., Ahmed, A. A. M., & Mekky, A. E. M. (2020). Synthesis, in-vitro and in-silico study of novel thiazoles as potent antibacterial agents and MurB inhibitors. Archiv Der Pharmazie, 353(4), e1900309. https://doi.org/10.1002/ardp.201900309
  • Shende, G., Haldankar, H., Barai, R. S., Bharmal, M. H., Shetty, V., Idicula-Thomas, S., & Hancock, J. (2017). PBIT: Pipeline builder for identification of drug targets for infectious diseases. Bioinformatics, 33(6), 929–931. https://doi.org/10.1093/bioinformatics/btw760
  • Skwarczynski, M., & Toth, I. (2016). Peptide-based synthetic vaccines. Chemical Science, 7(2), 842–854. https://doi.org/10.1039/c5sc03892h
  • Sonnhammer, E. L. L., Heijne, G. V., & Krogh, A. (1998). A hidden Markov model for predicting transmembrane helices in protein sequence. Sixth International Conference on Intelligent Systems for Molecular Biology, 6, 175–182.
  • Sousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5(1), 367. https://doi.org/10.1186/1756-0500-5-367
  • Stierand, K., Maass, P. C., & Rarey, M. (2006). Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics, 22(14), 1710–1716. https://doi.org/10.1093/bioinformatics/btl150
  • Sylvester, D. R., Alvarez, E., Patel, A., Ratnam, K., Kallender, H., & Wallis, N. G. (2001). Identification and characterization of UDP-N-acetylenolpyruvylglucosamine reductase (MurB) from the Gram-positive pathogen Streptococcus pneumoniae. The Biochemical Journal, 355(Pt 2), 431–435. https://doi.org/10.1042/0264-6021:3550431
  • Thakuria, R., Nath, N. K., & Saha, B. K. (2019). The nature and applications of π–π interactions: A perspective. Crystal Growth & Design, 19(2), 523–528. https://doi.org/10.1021/acs.cgd.8b01630
  • The UniProt Consortium. (2008). The Universal Protein resource (UniProt). Nucleic Acids Research, 36(SUPPL. 1), 190–195. https://doi.org/10.1093/nar/gkm895
  • Tortora, G. J., Funke, B. R., & Case, C. L. (2012). Microbiologia (C. Paludo & C. Bittencourt, Eds.; 10th ed.). Artmed.
  • Trott, O., & Olson, A. J. (2010). Autodock vina: Improving the speed and accuracy of docking. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). Gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Volkamer, A., Kuhn, D., Rippmann, F., & Rarey, M. (2012). Dogsitescorer: A web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics, 28(15), 2074–2075. https://doi.org/10.1093/bioinformatics/bts310
  • Waller, A. S., Paillot, R., & Timoney, J. F. (2011). Streptococcus equi: A pathogen restricted to one host. Journal of Medical Microbiology, 60(Pt 9), 1231–1240. https://doi.org/10.1099/jmm.0.028233-0
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Ward, P. N., Holden, M. T. G., Leigh, J. A., Lennard, N., Bignell, A., Barron, A., Clark, L., Quail, M. A., Woodward, J., Barrell, B. G., Egan, S. A., Field, T. R., Maskell, D., Kehoe, M., Dowson, C. G., Chanter, N., Whatmore, A. M., Bentley, S. D., & Parkhill, J. (2009). Evidence for niche adaptation in the genome of the bovine pathogen Streptococcus uberis. BMC Genomics, 10(1), 54. https://doi.org/10.1186/1471-2164-10-54
  • Xiang, Z., & He, Y. (2009). Vaxign: A web-based vaccine target design program for reverse vaccinology. Procedia in Vaccinology, 1(1), 23–29. https://doi.org/10.1016/j.provac.2009.07.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.