125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A computational study on structural and functional consequences of nsSNPs in human dopa decarboxylase

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Received 28 Jul 2023, Accepted 04 Nov 2023, Published online: 09 Jan 2024

References

  • Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249. https://doi.org/10.1038/nmeth0410-248
  • Arshad, M., Bhatti, A., & John, P. (2018). Identification and in silico analysis of functional SNPs of human TAGAP protein: A comprehensive study. PloS one, 13(1), e0188143. https://doi.org/10.1371/journal.pone.0188143
  • Artemaki, P. I., Papatsirou, M., Boti, M. A., Adamopoulos, P. G., Christodoulou, S., Vassilacopoulou, D., Scorilas, A., & Kontos, C. K. (2020). Revised exon structure of l-DOPA decarboxylase (DDC) reveals novel splice variants associated with colorectal cancer progression. International Journal of Molecular Sciences, 21(22), 8568. https://doi.org/10.3390/IJMS21228568
  • Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–W350. https://doi.org/10.1093/NAR/GKW408
  • Barbero, F., Mannino, G., & Casacci, L. P. (2023). The role of biogenic amines in social insects: With a special focus on ants. Insects, 14(4), 386. https://doi.org/10.3390/insects14040386
  • Bateman, A., Martin, M.-J., Orchard, S., Magrane, M., Agivetova, R., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bursteinas, B., Bye-A-Jee, H., Coetzee, R., Cukura, A., Da Silva, A., Denny, P., Dogan, T., Ebenezer, T., Fan, J., Castro, L. G., … Teodoro, D. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100
  • Bendl, J., Stourac, J., Salanda, O., Pavelka, A., Wieben, E. D., Zendulka, J., Brezovsky, J., & Damborsky, J. (2014). PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Computational Biology, 10(1), e1003440. https://doi.org/10.1371/journal.pcbi.1003440
  • Berezin, C., Glaser, F., Rosenberg, J., Paz, I., Pupko, T., Fariselli, P., Casadio, R., & Ben-Tal, N. (2004). ConSeq: The identification of functionally and structurally important residues in protein sequences. Bioinformatics, 20(8), 1322–1324. https://doi.org/10.1093/bioinformatics/bth070
  • Berry, M. D., Juorio, A. V., Li, X. M., & Boulton, A. A. (1996). Aromatic L-amino acid decarboxylase: A neglected and misunderstood enzyme. Neurochemical Research, 21(9), 1075–1087. https://doi.org/10.1007/BF02532418
  • Blom, N., Gammeltoft, S., & Brunak, S. (1999). Sequence and structure-based prediction of eukaryotic protein phosphorylation sites1 1Edited by F. E. Cohen. Journal of Molecular Biology, 294(5), 1351–1362. https://doi.org/10.1006/jmbi.1999.3310
  • Bromberg, Y., & Rost, B. (2007). SNAP: Predict effect of non-synonymous polymorphisms on function. Nucleic Acids Research, 35(11), 3823–3835. https://doi.org/10.1093/nar/gkm238
  • Burkhard, P., Dominici, P., Borri-Voltattorni, C., Jansonius, J. N., & Malashkevich, V. N. (2001). Structural insight into Parkinson’s disease treatment from drug-inhibited DOPA decarboxylase. Nature Structural Biology, 8(11), 963–967. https://doi.org/10.1038/nsb1101-963
  • Capriotti, E., & Altman, R. B. (2011). A new disease-specific machine learning approach for the prediction of cancer-causing missense variants. Genomics, 98(4), 310–317. https://doi.org/10.1016/J.YGENO.2011.06.010
  • Capriotti, E., Altman, R. B., & Bromberg, Y. (2013). Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics, 14 (Suppl 3), S2. https://doi.org/10.1186/1471-2164-14-s3-s2
  • Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33(Web Server issue), W306–W310. https://doi.org/10.1093/nar/gki375
  • Chaudhuri, K. R., & Schapira, A. H. (2009). Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. The Lancet. Neurology, 8(5), 464–474. https://doi.org/10.1016/S1474-4422(09)70068-7
  • Chen, C. W., Lin, J., & Chu, Y. W. (2013). iStable: Off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinformatics, 14(Suppl 2), S5. https://doi.org/10.1186/1471-2105-14-S2-S5
  • Cheng, J., Randall, A., & Baldi, P. (2006). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins, 62(4), 1125–1132. https://doi.org/10.1002/prot.20810
  • Corti, O., Lesage, S., & Brice, A. (2011). What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiological Reviews, 91(4), 1161–1218. https://doi.org/10.1152/physrev.00022.2010
  • Deng, W., Wang, Y., Ma, L., Zhang, Y., Ullah, S., & Xue, Y. (2017). Computational prediction of methylation types of covalently modified lysine and arginine residues in proteins. Briefings in Bioinformatics, 18(4), 647–658. https://doi.org/10.1093/bib/bbw041
  • Devos, D., Lejeune, S., Cormier-Dequaire, F., Tahiri, K., Charbonnier-Beaupel, F., Rouaix, N., Duhamel, A., Sablonnière, B., Bonnet, A.-M., Bonnet, C., Zahr, N., Costentin, J., Vidailhet, M., & Corvol, J.-C. (2014). Dopa-decarboxylase gene polymorphisms affect the motor response to L-dopa in Parkinson’s disease. Parkinsonism & Related Disorders, 20(2), 170–175. https://doi.org/10.1016/j.parkreldis.2013.10.017
  • Eltayb, W. A. (2023). Exploring particulate methane monooxygenase (pMMO) proteins using experimentation and computational molecular docking. Journal of King Saud University – Science, 35, 102634. https://doi.org/10.1016/j.jksus.2023.102634
  • George Priya Doss, C., Nagasundaram, N., Chakraborty, C., Chen, L., & Zhu, H. (2013). Extrapolating the effect of deleterious nsSNPs in the binding adaptability of flavopiridol with CDK7 protein: A molecular dynamics approach. Human Genomics, 7(1), 10. https://doi.org/10.1186/1479-7364-7-10
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2021). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors–An in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 39(12), 4362–4374. https://doi.org/10.1080/07391102.2020.1779818
  • Girish, A., Sutar, S., Murthy, T. P. K., Premanand, S. A., Garg, V., Patil, L., Shreyas, S., Shukla, R., Yadav, A. K., & Singh, T. R. (2023). Comprehensive bioinformatics analysis of structural and functional consequences of deleterious missense mutations in the human QDPR gene. Journal of Biomolecular Structure & Dynamics, 0(0), 1–17. https://doi.org/10.1080/07391102.2023.2226740
  • Halliday, G. M., & Stevens, C. H. (2011). Glia: Initiators and progressors of pathology in Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 26(1), 6–17. Jan https://doi.org/10.1002/mds.23455
  • Hansen, J. E., Lund, O., Tolstrup, N., Gooley, A. A., Williams, K. L., & Brunak, S. (1998). NetOglyc: Prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconjugate Journal, 15(2), 115–130. https://doi.org/10.1023/A:1006960004440
  • Hauser, R. A., Auinger, P., & Oakes, D. (2009). Levodopa response in early Parkinson’s disease. Movement Disorders, 24(16), 2328–2336. https://doi.org/10.1002/mds.22759
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Identification and in silico analysis of functional SNPs of human TAGAP protein: A comprehensive study. PLoS One, 13(1), e0188143. https://doi.org/10.1371/journal.pone.0188143
  • Ishii, S., Mizuguchi, H., Nishino, J., Hayashi, H., & Kagamiyama, H. (1996). Functionally important residues of aromatic L-amino acid decarboxylase probed by sequence alignment and site-directed mutagenesis. Journal of Biochemistry, 120(2), 369–376. https://doi.org/10.1093/oxfordjournals.jbchem.a021422
  • Itan, Y., Shang, L., Boisson, B., Ciancanelli, M. J., Markle, J. G., Martinez-Barricarte, R., Scott, E., Shah, I., Stenson, P. D., Gleeson, J., Cooper, D. N., Quintana-Murci, L., Zhang, S.-Y., Abel, L., & Casanova, J.-L. (2016). The mutation significance cutoff: Gene-level thresholds for variant predictions. Nature Methods, 13(2), 109–110. https://doi.org/10.1038/nmeth.3739
  • Jain, S., Wood, N. W., & Healy, D. G. (2005). Molecular genetic pathways in Parkinson’s disease: A review. Clinical Science, 109(4), 355–364. https://doi.org/10.1042/CS20050106
  • Kamaraj, B., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2013). In-silico screening of cancer associated mutation on PLK1 protein and its structural consequences. Journal of Molecular Modeling, 19(12), 5587–5599. https://doi.org/10.1007/s00894-013-2044-0
  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010
  • Khoury, G. A., Baliban, R. C., & Floudas, C. A. (2011). Proteome-wide post-translational modification statistics: Frequency analysis and curation of the Swiss-prot database. Scientific Reports, 1(1), 1. https://doi.org/10.1038/srep00090
  • Koutalellis, G., Stravodimos, K., Avgeris, M., Mavridis, K., Scorilas, A., Lazaris, A., & Constantinides, C. (2012). L-dopa decarboxylase (DDC) gene expression is related to outcome in patients with prostate cancer. BJU International, 110(6 Pt B), E267–E273. https://doi.org/10.1111/J.1464-410X.2012.11152.X
  • Kumar, B., Parasuraman, P., Murthy, T. P. K., Murahari, M., & Chandramohan, V. (2022). In silico screening of therapeutic potentials from Strychnos nux-vomica against the dimeric main protease (Mpro) structure of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 40(17), 7796–7814. https://doi.org/10.1080/07391102.2021.1902394
  • Lassmann, T., & Sonnhammer, E. L. (2005). Kalign – An accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics, 6(1), 298. https://doi.org/10.1186/1471-2105-6-298
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • López-Ferrando, V., Gazzo, A., De La Cruz, X., Orozco, M., & Gelpí, J. L. (2017). PMut: A web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Research, 45(W1), W222–W228. https://doi.org/10.1093/nar/gkx313
  • Montioli, R., Bisello, G., Dindo, M., Rossignoli, G., Voltattorni, C. B., & Bertoldi, M. (2020). New variants of AADC deficiency expand the knowledge of enzymatic phenotypes. Archives of Biochemistry and Biophysics, 682, 108263. https://doi.org/10.1016/J.ABB.2020.108263
  • Murthy, T. P. K., Shukla, R., Durga Prasad, N., Swetha, P., Shreyas, S., Singh, T. R., Pattabiraman, R., Nair, S. S., Mathew, B. B., & Kumar, K. M. (2023). Comprehensive analysis of non-synonymous missense SNPs of human galactose mutarotase (GALM) gene: An integrated computational approach. Journal of Biomolecular Structure & Dynamics, 41(20), 11178–11192. https: https://doi.org/10.1080/07391102.2022.2160813
  • Ng, P. C., & Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812–3814. https://doi.org/10.1093/nar/gkg509
  • Niroula, A., Urolagin, S., & Vihinen, M. (2015). PON-P2: Prediction method for fast and reliable identification of harmful variants. PloS One, 10(2), e0117380. https://doi.org/10.1371/journal.pone.0117380
  • Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302(1), 205–217. https://doi.org/10.1006/JMBI.2000.4042
  • Nutt, J. G. (2008). Pharmacokinetics and pharmacodynamics of levodopa. Movement Disorders, 23 Suppl 3, S580–S584. https://doi.org/10.1002/mds.22037
  • Nuytemans, K., Theuns, J., Cruts, M., & Van Broeckhoven, C. (2010). Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: A mutation update. Human Mutation, 31(7), 763–780. https://doi.org/10.1002/humu.21277
  • Oxford Academic. (2023). PANTHER-PSEP: Predicting disease-causing genetic variants using position-specific evolutionary preservation. https://academic.oup.com/bioinformatics/article/32/14/2230/1743587
  • Pace, C. N., Fu, H., Lee Fryar, K., Landua, J., Trevino, S. R., Schell, D., Thurlkill, R. L., Imura, S., Scholtz, J. M., Gajiwala, K., Sevcik, J., Urbanikova, L., Myers, J. K., Takano, K., Hebert, E. J., Shirley, B. A., & Grimsley, G. R. (2014). Contribution of hydrogen bonds to protein stability. Protein Science, 23(5), 652–661. https://doi.org/10.1002/pro.2449
  • Papatsirou, M., Adamopoulos, P. G., Artemaki, P. I., Georganti, V. P., Scorilas, A., Vassilacopoulou, D., & Kontos, C. K. (2021). Next-generation sequencing reveals alternative L-DOPA decarboxylase (DDC) splice variants bearing novel exons, in human hepatocellular and lung cancer cells. Gene, 768, 145262. https://doi.org/10.1016/J.GENE.2020.145262
  • Parthiban, V., Gromiha, M. M., & Schomburg, D. (2006). CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Research, 34(Web Server issue), W239–W242. https://doi.org/10.1093/nar/gkl190
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • PubMed. (2023). Parkinson’s disease. https://pubmed.ncbi.nlm.nih.gov/15172778/
  • Rodrigues, C. H. M., Pires, D. E. V., & Ascher, D. B. (2018). DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Research, 46(W1), W350–W355. https://doi.org/10.1093/nar/gky300
  • Rodrigues, C. H., Pires, D. E., Ascher, D. B., & David, C. B. (2021). DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Science: A Publication of the Protein Society, 30(1), 60–69. https://doi.org/10.1002/PRO.3942
  • Rogers, M. F., Shihab, H. A., Gaunt, T. R., & Campbell, C. (2017). CScape: A tool for predicting oncogenic single-point mutations in the cancer genome. Scientific Reports, 7(1), 11597. https://doi.org/10.1038/s41598-017-11746-4
  • Saxena, S., Achyuth B, S., Murthy, T. P. K., Chandramohan, V., Yadav, A. K., & Singh, T. R. (2021). Structural and functional analysis of disease-associated mutations in GOT1 gene: An in silico study. Computers in Biology and Medicine, 136, 104695. https://doi.org/10.1016/J.COMPBIOMED.2021.104695
  • Saxena, S., Murthy, T. P. K., Chandrashekhar, C. R., Patil, L. S., Aditya, A., Shukla, R., Yadav, A. K., Singh, T. R., Samantaray, M., & Ramaswamy, A. (2022). A bioinformatics approach to the identification of novel deleterious mutations of human TPMT through validated screening and molecular dynamics. Scientific Reports, 12(1), 18872. https://doi.org/10.1038/s41598-022-23488-z
  • Saxena, S., Murthy, T. P. K., Chandramohan, V., Achyuth, S., Maansi, M., Das, P., Sineagha, V., & Prakash, S. (2022). In-silico analysis of deleterious single nucleotide polymorphisms of PNMT gene. Molecular Simulation. 48(16), 1411–1425. https://doi.org/10.1080/08927022.2022.2094922/SUPPL_FILE/GMOS_A_2094922_SM0366.DOCX
  • Sharma, P., Joshi, T., Joshi, T., Chandra, S., & Tamta, S. (2021). Molecular dynamics simulation for screening phytochemicals as α-amylase inhibitors from medicinal plants. Journal of Biomolecular Structure & Dynamics, 39(17), 6524–6538. https://doi.org/10.1080/07391102.2020.1801507
  • Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). DbSNP: The NCBI database of genetic variation. Nucleic Acids Research, 29(1), 308–311. https://doi.org/10.1093/nar/29.1.308
  • Shihab, H. A., Gough, J., Cooper, D. N., Stenson, P. D., Barker, G. L. A., Edwards, K. J., Day, I. N. M., & Gaunt, T. R. (2013). Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Human Mutation, 34(1), 57–65. https://doi.org/10.1002/HUMU.22225
  • Shulman, J. M., De Jager, P. L., & Feany, M. B. (2011). Parkinson’s disease: Genetics and pathogenesis. Annual Review of Pathology, 6(1), 193–222. https://doi.org/10.1146/annurev-pathol-011110-130242
  • Sievers, F., & Higgins, D. G. (2014). Clustal omega, accurate alignment of very large numbers of sequences. Methods in Molecular Biology. 1079, 105–116. https://doi.org/10.1007/978-1-62703-646-7_6/COVER
  • Singh, B., Mal, G., Gautam, S. K., & Mukesh, M. (2019). Advances in animal biotechnology. Springer. https://doi.org/10.1007/978-3-030-21309-1
  • Solayman, M., Saleh, M. A., Paul, S., Khalil, M. I., & Gan, S. H. (2017). In silico analysis of nonsynonymous single nucleotide polymorphisms of the human adiponectin receptor 2 (ADIPOR2) gene. Computational Biology and Chemistry, 68, 175–185. https://doi.org/10.1016/j.compbiolchem.2017.03.005
  • Strub, C., Alies, C., Lougarre, A., Ladurantie, C., Czaplicki, J., & Fournier, D. (2004). Mutation of exposed hydrophobic amino acids to arginine to increase protein stability. BMC Biochemistry, 5(1), 9. https://doi.org/10.1186/1471-2091-5-9
  • Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Tavtigian, S. V., Deffenbaugh, A. M., Yin, L., Judkins, T., Scholl, T., Samollow, P. B., de Silva, D., Zharkikh, A., & Thomas, A. (2006). Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. Journal of Medical Genetics, 43(4), 295–305. https://doi.org/10.1136/jmg.2005.033878
  • Translational Neurodegeneration. (2023). Drug therapy in patients with Parkinson’s disease. https://translationalneurodegeneration.biomedcentral.com/articles/10 .1186/2047-9158-1-10
  • Tremmel, E., Kuhn, C., Kaltofen, T., Vilsmaier, T., Mayr, D., Mahner, S., Ditsch, N., Jeschke, U., & Vattai, A. (2020). L-dopa-decarboxylase (DDC) is a positive prognosticator for breast cancer patients and epinephrine regulates breast cancer cell (MCF7 and T47D) growth in vitro according to their different expression of Gi-protein-coupled receptors. International Journal of Molecular Sciences, 21(24), 9565. https://doi.org/10.3390/ijms21249565
  • Wang, C., Tan, X., Tang, D., Gou, Y., Han, C., Ning, W., Lin, S., Zhang, W., Chen, M., Peng, D., & Xue, Y. (2022). GPS-Uber: A hybrid-learning framework for prediction of general and E3-specific lysine ubiquitination sites. Briefings in Bioinformatics, 23(2), bbab574. https://doi.org/10.1093/bib/bbab574
  • Wang, C., Xu, H., Lin, S., Deng, W., Zhou, J., Zhang, Y., Shi, Y., Peng, D., & Xue, Y. (2020). GPS 5.0: An update on the prediction of kinase-specific phosphorylation sites in proteins. Genomics, Proteomics & Bioinformatics, 18(1), 72–80. https://doi.org/10.1016/j.gpb.2020.01.001
  • Williams, K., Skrobanski, H., Werner, C., O'Neill, S., Buesch, K., & Acaster, S. (2021). Symptoms and impact of aromatic l-amino acid decarboxylase (AADC) deficiency: A qualitative study and the development of a patient-centred conceptual model. Current Medical Research and Opinion, 37(8), 1353–1361. https://doi.org/10.1080/03007995.2021.1932449.
  • Yadav, A. K., & Singh, T. R. (2021). Novel structural and functional impact of damaging single nucleotide polymorphisms (SNPs) on human SMYD2 protein using computational approaches. Meta Gene, 28, 100871. https://doi.org/10.1016/j.mgene.2021.100871
  • Yates, C. M., Filippis, I., Kelley, L. A., & Sternberg, M. J. E. (2014). SuSPect: Enhanced prediction of single amino acid variant (SAV) phenotype using network features. Journal of Molecular Biology, 426(14), 2692–2701. https://doi.org/10.1016/j.jmb.2014.04.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.