182
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Revealing curcumin therapeutic targets on SRC, PPARG, MAPK8 and HSP90 as liver cirrhosis therapy based on comprehensive bioinformatic study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Received 20 Aug 2023, Accepted 09 Dec 2023, Published online: 12 Jan 2024

References

  • Abo-Zaid, M. A., Shaheen, E. S., & Ismail, A. H. (2020). Immunomodulatory effect of curcumin on hepatic cirrhosis in experimental rats. Journal of Food Biochemistry, 44(6), e13219. https://doi.org/10.1111/jfbc.13219
  • Aggarwal, B. B., Gupta, S. C., & Sung, B. (2013). Curcumin: An orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. British Journal of Pharmacology, 169(8), 1672–1692. https://doi.org/10.1111/bph.12131
  • Ashrafizadeh, M., Ahmadi, Z., Mohammadinejad, R., Farkhondeh, T., & Samarghandian, S. (2020). Curcumin activates the Nrf2 pathway and induces cellular protection against oxidative injury. Current Molecular Medicine, 20(2), 116–133. https://doi.org/10.2174/1566524019666191016150757
  • Berthier, A., Johanns, M., Zummo, F. P., Lefebvre, P., & Staels, B. (2021). PPARs in liver physiology. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1867(5), 166097. https://doi.org/10.1016/j.bbadis.2021.166097
  • Bhullar, K. S., Jha, A., & Rupasinghe, H. P. V. (2015). Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chemico-Biological Interactions, 242, 107–122. https://doi.org/10.1016/j.cbi.2015.09.020
  • BIOVIA. (2019). Discovery Studio Visualizer. Dassault Systèmes.
  • Brasca, M. G., Mantegani, S., Amboldi, N., Bindi, S., Caronni, D., Casale, E., Ceccarelli, W., Colombo, N., De Ponti, A., Donati, D., Ermoli, A., Fachin, G., Felder, E. R., Ferguson, R. D., Fiorelli, C., Guanci, M., Isacchi, A., Pesenti, E., Polucci, P., … Fogliatto, G. (2013). Discovery of NMS-E973 as novel, selective and potent inhibitor of heat shock protein 90 (Hsp90). Bioorganic & Medicinal Chemistry, 21(22), 7047–7063. https://doi.org/10.1016/j.bmc.2013.09.018
  • Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V., Christie, C. H., Dalenberg, K., Di Costanzo, L., Duarte, J. M., Dutta, S., Feng, Z., Ganesan, S., Goodsell, D. S., Ghosh, S., Green, R. K., Guranović, V., Guzenko, D., Hudson, B. P., … Zhuravleva, M. (2021). RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research, 49(D1), D437–D451. https://doi.org/10.1093/nar/gkaa1038
  • Byun, J., & Lee, J. (2021). Identifying the Hot Spot Residues of the SARS-CoV-2 Main Protease Using MM-PBSA and Multiple Force Fields. Life (Basel, Switzerland), 12(1), 54. https://doi.org/10.3390/life12010054
  • Cai, K., Xie, Z., Liu, Y., Wu, J., Song, H., Liu, W., Wang, X., Xiong, Y., Gan, S., & Sun, Y. (2023). Identification of potential key genes and prognostic biomarkers of lung cancer based on bioinformatics. BioMed Research International, 2023, 2152432. https://doi.org/10.1155/2023/2152432
  • Chandrashekar, D. S., Karthikeyan, S. K., Korla, P. K., Patel, H., Shovon, A. R., Athar, M., Netto, G. J., Qin, Z. S., Kumar, S., Manne, U., Creighton, C. J., & Varambally, S. (2022). UALCAN: An update to the integrated cancer data analysis platform. Neoplasia (New York, N.Y.), 25, 18–27. https://doi.org/10.1016/j.neo.2022.01.001
  • Chen, J., Li, C., Zhu, Y., Sun, L., Sun, H., Liu, Y., Zhang, Z., & Wang, C. (2015). Integrating GO and KEGG terms to characterize and predict acute myeloid leukemia-related genes. Hematology (Amsterdam, Netherlands), 20(6), 336–342. https://doi.org/10.1179/1607845414Y.0000000209
  • Chi, C.-W., & Hsu, H.-T. (2014). Emerging role of the peroxisome proliferator-activated receptor-gamma in hepatocellular carcinoma. Journal of Hepatocellular Carcinoma, 1, 127–135. https://doi.org/10.2147/JHC.S48512
  • Choi, J., Ko, Y., Lee, H. S., Park, Y. S., Yang, Y., & Yoon, S. (2010). Identification of (β-carboxyethyl)-rhodanine derivatives exhibiting peroxisome proliferator-activated receptor γ activity. European Journal of Medicinal Chemistry, 45(1), 193–202. https://doi.org/10.1016/j.ejmech.2009.09.042
  • Choy, T.-K., Wang, C.-Y., Phan, N. N., Khoa Ta, H. D., Anuraga, G., Liu, Y.-H., Wu, Y.-F., Lee, K.-H., Chuang, J.-Y., & Kao, T.-J. (2021). Identification of dipeptidyl peptidase (DPP) family genes in clinical breast cancer patients via an integrated bioinformatics approach. Diagnostics (Basel, Switzerland), 11(7), 1204. https://doi.org/10.3390/diagnostics11071204
  • Chung, W., Jo, C., Chung, W. J., & Kim, D. J. (2018). Liver cirrhosis and cancer: Comparison of mortality. Hepatology International, 12(3), 269–276. https://doi.org/10.1007/s12072-018-9850-5
  • Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In Chemical biology (pp. 243–250). Humana Press. https://doi.org/10.1007/978-1-4939-2269-7_19
  • D'Amico, G., Morabito, A., D'Amico, M., Pasta, L., Malizia, G., Rebora, P., & Valsecchi, M. G. (2018). New concepts on the clinical course and stratification of compensated and decompensated cirrhosis. Hepatology International, 12(Suppl 1), 34–43. https://doi.org/10.1007/s12072-017-9808-z
  • Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., & Lempicki, R. A. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology, 4(9), R60. https://doi.org/10.1186/gb-2003-4-9-r60
  • Du, T.-Y., Gao, Y.-X., & Zheng, Y.-S. (2023). Identification of key genes related to immune infiltration in cirrhosis via bioinformatics analysis. Scientific Reports, 13(1), 1876. https://doi.org/10.1038/s41598-022-26794-8
  • Efsen, E., Bonacchi, A., Pastacaldi, S., Valente, A. J., Wenzel, U. O., Tosti-Guerra, C., Pinzani, M., Laffi, G., Abboud, H. E., Gentilini, P., & Marra, F. (2001). Agonist-specific regulation of monocyte chemoattractant protein-1 expression by cyclooxygenase metabolites in hepatic stellate cells. Hepatology (Baltimore, Md.), 33(3), 713–721. https://doi.org/10.1053/jhep.2001.22761
  • Farzaei, M., Zobeiri, M., Parvizi, F., El-Senduny, F., Marmouzi, I., Coy-Barrera, E., Naseri, R., Nabavi, S., Rahimi, R., & Abdollahi, M. (2018). Curcumin in liver diseases: A systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients, 10(7), 855. https://doi.org/10.3390/nu10070855
  • Fattovich, G., Stroffolini, T., Zagni, I., & Donato, F. (2004). Hepatocellular carcinoma in cirrhosis: Incidence and risk factors. Gastroenterology, 127(5 Suppl 1), S35–S50. https://doi.org/10.1053/j.gastro.2004.09.014
  • Forouzanfar, F., Barreto, G., Majeed, M., & Sahebkar, A. (2019). Modulatory effects of curcumin on heat shock proteins in cancer: A promising therapeutic approach. BioFactors (Oxford, England), 45(5), 631–640. https://doi.org/10.1002/biof.1522
  • Friedman, S. L. (2017). Hepatic fibrosis. In Schiff’s diseases of the liver (pp. 269–289). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119251316.ch10
  • Gao, M., Geng, X.-P., & Xiang, H.-P. (2015). HSP90 and SIRT3 expression in hepatocellular carcinoma and their effect on invasive capability of human hepatocellular carcinoma cells. Asian Pacific Journal of Tropical Medicine, 8(4), 305–308. https://doi.org/10.1016/S1995-7645(14)60335-7
  • Gao, X., Wang, X., & Zhang, S. (2018). Bioinformatics identification of crucial genes and pathways associated with hepatocellular carcinoma. Bioscience Reports, 38(6), BSR20181441. https://doi.org/10.1042/BSR20181441
  • Garai, Á., Zeke, A., Gógl, G., Törő, I., Fördős, F., Blankenburg, H., Bárkai, T., Varga, J., Alexa, A., Emig, D., Albrecht, M., & Reményi, A. (2012). Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove. Science Signaling, 5(245), ra74. https://doi.org/10.1126/scisignal.2003004
  • Garcia-Compean, D., Jaquez-Quintana, J. O., Gonzalez-Gonzalez, J. A., & Maldonado-Garza, H. (2009). Liver cirrhosis and diabetes: Risk factors, pathophysiology, clinical implications and management. World Journal of Gastroenterology, 15(3), 280–288. https://doi.org/10.3748/wjg.15.280
  • Ge, P. S., & Runyon, B. A. (2016). Treatment of patients with cirrhosis. The New England Journal of Medicine, 375(8), 767–777. https://doi.org/10.1056/NEJMra1504367
  • Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A. J., … Zhang, J. (2004). Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology, 5(10), R80. https://doi.org/10.1186/gb-2004-5-10-r80
  • Giaginis, C., Daskalopoulou, S. S., Vgenopoulou, S., Sfiniadakis, I., Kouraklis, G., & Theocharis, S. E. (2009). Heat Shock Protein-27, -60 and -90 expression in gastric cancer: Association with clinicopathological variables and patient survival. BMC Gastroenterology, 9(1), 14. https://doi.org/10.1186/1471-230X-9-14
  • Gonzalez-Sanchez, E., Firrincieli, D., Housset, C., & Chignard, N. (2017). Expression patterns of nuclear receptors in parenchymal and non-parenchymal mouse liver cells and their modulation in cholestasis. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1863(7), 1699–1708. https://doi.org/10.1016/j.bbadis.2017.04.004
  • Guo, Y., Wu, G., Yi, J., Yang, Q., Jiang, W., Lin, S., Yang, X., Cai, X., & Mao, L. (2021). Anti-hepatocellular carcinoma effect and molecular mechanism of the estrogen signaling pathway. Frontiers in Oncology, BSR20181441. https://doi.org/10.3389/fonc.2021.763539
  • Hardwick, J. P., Osei-Hyiaman, D., Wiland, H., Abdelmegeed, M. A., & Song, B.-J. (2009). PPAR/RXR regulation of fatty acid metabolism and fatty acid -hydroxylase (CYP4) isozymes: Implications for prevention of lipotoxicity in fatty liver disease. PPAR Research, 2009, 952734. https://doi.org/10.1155/2009/952734
  • Hernández-Aquino, E., Quezada-Ramírez, M. A., Silva-Olivares, A., Ramos-Tovar, E., Flores-Beltrán, R. E., Segovia, J., Shibayama, M., & Muriel, P. (2020). Curcumin downregulates Smad pathways and reduces hepatic stellate cells activation in experimental fibrosis. Annals of Hepatology, 19(5), 497–506. https://doi.org/10.1016/j.aohep.2020.05.006
  • Huang, D. Q., Terrault, N. A., Tacke, F., Gluud, L. L., Arrese, M., Bugianesi, E., & Loomba, R. (2023). Global epidemiology of cirrhosis—aetiology, trends and predictions. Nature Reviews. Gastroenterology & Hepatology, 20(6), 388–398. https://doi.org/10.1038/s41575-023-00759-2
  • Huang, X., Rehman, H. M., Szöllősi, A. G., & Zhou, S. (2022). Network pharmacology-based approach combined with bioinformatic analytics to elucidate the potential of curcumol against hepatocellular carcinoma. Genes, 13(4), 653. https://doi.org/10.3390/genes13040653
  • Hui, L., Zatloukal, K., Scheuch, H., Stepniak, E., & Wagner, E. F. (2008). Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. The Journal of Clinical Investigation, 118(12), 3943–3953. https://doi.org/10.1172/JCI37156
  • Jauhar, M. M., Syaifie, P. H., Arda, A. G., Ramadhan, D., Nugroho, D. W., Ningsih Kaswati, N. M., Noviyanto, A., Rochman, N. T., & Mardliyati, E. (2022). Evaluation of propolis activity as sucrose-dependent and sucrose-independent Streptococcus mutans inhibitors to treat dental caries using an in silico approach. Journal of Applied Pharmaceutical Science, 13(3), 071–080. https://doi.org/10.7324/JAPS.2023.45365
  • Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., & Morishima, K. (2017). KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research, 45(D1), D353–D361. https://doi.org/10.1093/nar/gkw1092
  • Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1), D457–D462. https://doi.org/10.1093/nar/gkv1070
  • Karsdal, M. A., Manon-Jensen, T., Genovese, F., Kristensen, J. H., Nielsen, M. J., Sand, J. M. B., Hansen, N.-U B., Bay-Jensen, A.-C., Bager, C. L., Krag, A., Blanchard, A., Krarup, H., Leeming, D. J., & Schuppan, D. (2015). Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. American Journal of Physiology. Gastrointestinal and Liver Physiology, 308(10), G807–G830. https://doi.org/10.1152/ajpgi.00447.2014
  • Khan, H., Ullah, H., & Nabavi, S. M. (2019). Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 124, 182–191. https://doi.org/10.1016/j.fct.2018.12.002
  • Khodarahmi, A., Javidmehr, D., Eshaghian, A., Ghoreshi, Z., Karimollah, A., Yousefi, H., & Moradi, A. (2021). Curcumin exerts hepatoprotection via overexpression of Paraoxonase-1 and its regulatory genes in rats undergone bile duct ligation. Journal of Basic and Clinical Physiology and Pharmacology, 32(5), 969–977. https://doi.org/10.1515/jbcpp-2020-0067
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956
  • Kronborg, T. M., Ytting, H., Hobolth, L., Møller, S., & Kimer, N. (2021). Novel anti-inflammatory treatments in cirrhosis. a literature-based study. Frontiers in Medicine, 8, 718896. https://doi.org/10.3389/fmed.2021.718896
  • Kyung, E. J., Kim, H. B., Hwang, E. S., Lee, S., Choi, B. K., Kim, J. W., Kim, H. J., Lim, S. M., Kwon, O. I., & Woo, E. J. (2018). Evaluation of hepatoprotective effect of curcumin on liver cirrhosis using a combination of biochemical analysis and magnetic resonance-based electrical conductivity imaging. Mediators of Inflammation, 2018, 5491797–5491799. https://doi.org/10.1155/2018/5491797
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Lei, X., Jing, J., Zhang, M., Guan, B., Dong, Z., & Wang, C. (2021). Bioinformatic identification of hub genes and analysis of prognostic values in colorectal cancer. Nutrition and Cancer, 73(11-12), 2568–2578. https://doi.org/10.1080/01635581.2020.1841249
  • Leng, A., Liu, T., Yang, J., Cui, J., Li, X., Zhu, Y., Xiong, T., Zhang, G., & Chen, Y. (2012). The apoptotic effect and associated signalling of HSP90 inhibitor 17-DMAG in hepatocellular carcinoma cells. Cell Biology International, 36(10), 893–899. https://doi.org/10.1042/CBI20110473
  • Levinson, N. M., & Boxer, S. G. (2014). A conserved water-mediated hydrogen bond network defines bosutinib’s kinase selectivity. Nature Chemical Biology, 10(2), 127–132. https://doi.org/10.1038/nchembio.1404
  • Li, D., Fu, J., Du, M., Zhang, H., Li, L., Cen, J., Li, W., Chen, X., Lin, Y., Conway, E. M., Pikarsky, E., Wang, H., Pan, G., Ji, Y., Wang, H., & Hui, L. (2016). Hepatocellular carcinoma repression by TNFα‐mediated synergistic lethal effect of mitosis defect‐induced senescence and cell death sensitization. Hepatology (Baltimore, Md.), 64(4), 1105–1120. https://doi.org/10.1002/hep.28637
  • Li, D., Wang, L., Jing, Y., Jiang, B., Zhao, L., Miao, Y., Xin, S., & Ge, C. (2022). Exploring molecular targets and mechanisms of apigenin in the treatment of papillary thyroid carcinoma based on network pharmacology and molecular docking analysis. Natural Product Communications, 17(10), 1934578X2211354. https://doi.org/10.1177/1934578X221135435
  • Li, J., Zou, B., Yeo, Y. H., Feng, Y., Xie, X., Lee, D. H., Fujii, H., Wu, Y., Kam, L. Y., Ji, F., Li, X., Chien, N., Wei, M., Ogawa, E., Zhao, C., Wu, X., Stave, C. D., Henry, L., Barnett, S., … Nguyen, M. H. (2019). Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: A systematic review and meta-analysis. The Lancet. Gastroenterology & Hepatology, 4(5), 389–398. https://doi.org/10.1016/S2468-1253(19)30039-1
  • Li, Y., Choi, M., Suino, K., Kovach, A., Daugherty, J., Kliewer, S. A., & Xu, H. E. (2005). Structural and biochemical basis for selective repression of the orphan nuclear receptor liver receptor homolog 1 by small heterodimer partner. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9505–9510. https://doi.org/10.1073/pnas.0501204102
  • Li, Z., Kruijt, J. K., der Sluis, R. J. V., Berkel, T. J. C. V., & Hoekstra, M. (2013). Nuclear receptor atlas of female mouse liver parenchymal, endothelial, and Kupffer cells. Physiological Genomics, 45(7), 268–275. https://doi.org/10.1152/physiolgenomics.00151.2012
  • Liu, T., Lin, Y., Wen, X., Jorissen, R. N., & Gilson, M. K. (2007). BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Research, 35(Database issue), D198–D201. https://doi.org/10.1093/nar/gkl999
  • Liu, X., Ouyang, S., Yu, B., Liu, Y., Huang, K., Gong, J., Zheng, S., Li, Z., Li, H., & Jiang, H. (2010). PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Research, 38(Web Server issue), W609–W614. https://doi.org/10.1093/nar/gkq300
  • Liu, Z., Sun, Y., Zhen, H., & Nie, C. (2022). Network pharmacology integrated with transcriptomics deciphered the potential mechanism of codonopsis pilosula against hepatocellular carcinoma. Evidence-Based Complementary and Alternative Medicine: ECAM, 2022, 1340194. https://doi.org/10.1155/2022/1340194
  • Mahmoudi, A., Atkin, S. L., Jamialahmadi, T., Banach, M., & Sahebkar, A. (2022). Effect of curcumin on attenuation of liver cirrhosis via genes/proteins and pathways: A system pharmacology study. Nutrients, 14(20), 4344. https://doi.org/10.3390/nu14204344
  • Mao, Y., Hao, J., Jin, Z.-Q., Niu, Y.-Y., Yang, X., Liu, D., Cao, R., & Wu, X.-Z. (2017). Network pharmacology-based and clinically relevant prediction of the active ingredients and potential targets of Chinese herbs in metastatic breast cancer patients. Oncotarget, 8(16), 27007–27021. https://doi.org/10.18632/oncotarget.15351
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py : An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Moghtaderi, H., Sepehri, H., & Attari, F. (2017). Combination of arabinogalactan and curcumin induces apoptosis in breast cancer cells in vitro and inhibits tumor growth via overexpression of p53 level in vivo. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 88, 582–594. https://doi.org/10.1016/j.biopha.2017.01.072
  • Nabavi, S. F., Daglia, M., Moghaddam, A. H., Habtemariam, S., & Nabavi, S. M. (2014). Curcumin and liver disease: From chemistry to medicine. Comprehensive Reviews in Food Science and Food Safety, 13(1), 62–77. https://doi.org/10.1111/1541-4337.12047
  • Niu, X., Zhang, J., Ni, J., Wang, R., Zhang, W., Sun, S., Peng, Y., Bai, M., & Zhang, Z. (2018). Network pharmacology-based identification of major component of Angelica sinensis and its action mechanism for the treatment of acute myocardial infarction. Bioscience Reports, 38(6), BSR20180519 https://doi.org/10.1042/BSR20180519
  • Noor, F., Tahir Ul Qamar, M., Ashfaq, U. A., Albutti, A., Alwashmi, A. S. S., & Aljasir, M. A. (2022). Network pharmacology approach for medicinal plants: review and assessment. Pharmaceuticals (Basel, Switzerland), 15(5), 572. https://doi.org/10.3390/ph15050572
  • Nouri‐Vaskeh, M., Malek Mahdavi, A., Afshan, H., Alizadeh, L., & Zarei, M. (2020). Effect of curcumin supplementation on disease severity in patients with liver cirrhosis: A randomized controlled trial. Phytotherapy Research: PTR, 34(6), 1446–1454. https://doi.org/10.1002/ptr.6620
  • Paik, J. M., Golabi, P., Younossi, Y., Mishra, A., & Younossi, Z. M. (2020). Changes in the global burden of chronic liver diseases from 2012 to 2017: The growing impact of NAFLD. Hepatology (Baltimore, Md.), 72(5), 1605–1616. https://doi.org/10.1002/hep.31173
  • Pang, R., Tse, E., & Poon, R. T. P. (2006). Molecular pathways in hepatocellular carcinoma. Cancer Letters, 240(2), 157–169. https://doi.org/10.1016/j.canlet.2005.08.031
  • Perez, I., Bolte, F. J., Bigelow, W., Dickson, Z., & Shah, N. L. (2021). Step by step: Managing the complications of cirrhosis. Hepatic Medicine: Evidence and Research, 13, 45–57. volume https://doi.org/10.2147/HMER.S278032
  • Pick, E., Kluger, Y., Giltnane, J. M., Moeder, C., Camp, R. L., Rimm, D. L., & Kluger, H. M. (2007). High HSP90 expression is associated with decreased survival in breast cancer. Cancer Research, 67(7), 2932–2937. https://doi.org/10.1158/0008-5472.CAN-06-4511
  • Pinter, M., Trauner, M., Peck-Radosavljevic, M., & Sieghart, W. (2016). Cancer and liver cirrhosis: Implications on prognosis and management. ESMO Open, 1(2), e000042. https://doi.org/10.1136/esmoopen-2016-000042
  • Qiu, J., Zhou, Q., Zhai, X., Jia, X., & Zhou, Y. (2014). Curcumin regulates delta-like homolog 1 expression in activated hepatic stellate cell. European Journal of Pharmacology, 728, 9–15. https://doi.org/10.1016/j.ejphar.2014.01.074
  • Rodina, A., Vilenchik, M., Moulick, K., Aguirre, J., Kim, J., Chiang, A., Litz, J., Clement, C. C., Kang, Y., She, Y., Wu, N., Felts, S., Wipf, P., Massague, J., Jiang, X., Brodsky, J. L., Krystal, G. W., & Chiosis, G. (2007). Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nature Chemical Biology, 3(8), 498–507. https://doi.org/10.1038/nchembio.2007.10
  • Safran, M., Rosen, N., Twik, M., BarShir, R., Stein, T. I., Dahary, D., Fishilevich, S., & Lancet, D. (2021). The GeneCards suite. In Practical guide to life science databases (pp. 27–56). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-5812-9_2
  • Salehi, E., Mashayekh, M., Taheri, F., Gholami, M., Motaghinejad, M., Safari, S., & Sepehr, A. (2021). Curcumin can be acts as effective agent for prevent or treatment of alcohol-induced toxicity in hepatocytes: An illustrated mechanistic review. Iranian Journal of Pharmaceutical Research: IJPR, 20(1), 418–436. https://doi.org/10.22037/ijpr.2020.112852.13985
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Sangiovanni, A., Prati, G. M., Fasani, P., Ronchi, G., Romeo, R., Manini, M., Del Ninno, E., Morabito, A., & Colombo, M. (2006). The natural history of compensated cirrhosis due to hepatitis C virus: A 17-year cohort study of 214 patients. Hepatology (Baltimore, Md.), 43(6), 1303–1310. https://doi.org/10.1002/hep.21176
  • Sanz-García, C., Fernández-Iglesias, A., Gracia-Sancho, J., Arráez-Aybar, L. A., Nevzorova, Y. A., & Cubero, F. J. (2021). The space of disse: The liver hub in health and disease. Livers, 1(1), 3–26. https://doi.org/10.3390/livers1010002
  • Schattenberg, J. M., Nagel, M., Kim, Y. O., Kohl, T., Wörns, M. A., Zimmermann, T., Schad, A., Longerich, T., Schuppan, D., He, Y.-W., Galle, P. R., & Schuchmann, M. (2012). Increased hepatic fibrosis and JNK2-dependent liver injury in mice exhibiting hepatocyte-specific deletion of cFLIP. American Journal of Physiology. Gastrointestinal and Liver Physiology, 303(4), G498–G506. https://doi.org/10.1152/ajpgi.00525.2011
  • Schrödinger, L. (2023). The PyMOL Molecular Graphics System Version 2.5.5.
  • Seo, H.-Y., Lee, S.-H., Lee, J.-H., Kang, Y. N., Hwang, J. S., Park, K.-G., Kim, M. K., & Jang, B. K. (2020). Src inhibition attenuates liver fibrosis by preventing hepatic stellate cell activation and decreasing connective tissue growth factor. Cells, 9(3), 558. https://doi.org/10.3390/cells9030558
  • Sepanlou, S. G., Safiri, S., Bisignano, C., Ikuta, K. S., Merat, S., Saberifiroozi, M., Poustchi, H., Tsoi, D., Colombara, D. V., Abdoli, A., Adedoyin, R. A., Afarideh, M., Agrawal, S., Ahmad, S., Ahmadian, E., Ahmadpour, E., Akinyemiju, T., Akunna, C. J., Alipour, V., … Malekzadeh, R. (2020). The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology & Hepatology, 5(3), 245–266. https://doi.org/10.1016/S2468-1253(19)30349-8
  • Shang, L., Wang, Y., Li, J., Zhou, F., Xiao, K., Liu, Y., Zhang, M., Wang, S., & Yang, S. (2023). Mechanism of Sijunzi Decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. Journal of Ethnopharmacology, 302(Pt A), 115876. https://doi.org/10.1016/j.jep.2022.115876
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
  • Solà, E., & Ginès, P. (2015). Challenges and management of liver cirrhosis: Pathophysiology of renal dysfunction in cirrhosis. Digestive Diseases (Basel, Switzerland), 33(4), 534–538. https://doi.org/10.1159/000375344
  • Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., Stein, T. I., Nudel, R., Lieder, I., Mazor, Y., Kaplan, S., Dahary, D., Warshawsky, D., Guan‐Golan, Y., Kohn, A., Rappaport, N., Safran, M., & Lancet, D. (2016). The GeneCards suite: From gene data mining to disease genome sequence analyses. Current Protocols in Bioinformatics, 54(1), 1.30.1–1.30.33. https://doi.org/10.1002/cpbi.5
  • Su, M., Guo, C., Liu, M., Liang, X., & Yang, B. (2019). Therapeutic targets of vitamin C on liver injury and associated biological mechanisms: A study of network pharmacology. International Immunopharmacology, 66, 383–387. https://doi.org/10.1016/j.intimp.2018.11.048
  • Sun, Y., Zang, Z., Xu, X., Zhang, Z., Zhong, L., Zan, W., Zhao, Y., & Sun, L. (2010). Differential proteomics identification of HSP90 as potential serum biomarker in hepatocellular carcinoma by two-dimensional electrophoresis and mass spectrometry. International Journal of Molecular Sciences, 11(4), 1423–1433. https://doi.org/10.3390/ijms11041423
  • Syaifie, P. H., Harisna, A. H., Nasution, M. A. F., Arda, A. G., Nugroho, D. W., Jauhar, M. M., Mardliyati, E., Maulana, N. N., Rochman, N. T., Noviyanto, A., Banegas-Luna, A. J., & Pérez-Sánchez, H. (2022). Computational study of Asian propolis compounds as potential anti-type 2 diabetes mellitus agents by using inverse virtual screening with the DIA-DB web server, Tanimoto similarity analysis, and molecular dynamic simulation. Molecules (Basel, Switzerland), 27(13), 3972. https://doi.org/10.3390/molecules27133972
  • Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K. P., Kuhn, M., Bork, P., Jensen, L. J., & von Mering, C. (2015). STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(Database issue), D447–D452. https://doi.org/10.1093/nar/gku1003
  • Tang, Y., Li, M., Wang, J., Pan, Y., & Wu, F.-X. (2015). CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Bio Systems, 127, 67–72. https://doi.org/10.1016/j.biosystems.2014.11.005
  • Thyparambil, S. P., Edmondson, R. D., & Dragan, Y. P. (2009). Primary liver cancer: Chemical carcinogenesis. In Hepatocellular carcinoma (pp. 55–107). Humana Press. https://doi.org/10.1007/978-1-60327-376-3_3
  • Toraih, E. A., Alrefai, H. G., Hussein, M. H., Helal, G. M., Khashana, M. S., & Fawzy, M. S. (2019). Overexpression of heat shock protein HSP90AA1 and translocase of the outer mitochondrial membrane TOM34 in HCV-induced hepatocellular carcinoma: A pilot study. Clinical Biochemistry, 63, 10–17. https://doi.org/10.1016/j.clinbiochem.2018.12.001
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. NA-NA. https://doi.org/10.1002/jcc.21334
  • Tsochatzis, E. A., Bosch, J., & Burroughs, A. K. (2014). Liver cirrhosis. Lancet (London, England), 383(9930), 1749–1761. https://doi.org/10.1016/S0140-6736(14)60121-5
  • Vaghasia, H., Sakaria, S., Prajapati, J., Saraf, M., & Rawal, R. M. (2022). Interactive bioinformatics analysis for the screening of hub genes and molecular docking of phytochemicals present in kitchen spices to inhibit CDK1 in cervical cancer. Computers in Biology and Medicine, 149, 105994. https://doi.org/10.1016/j.compbiomed.2022.105994
  • Velázquez-Libera, J. L., Durán-Verdugo, F., Valdés-Jiménez, A., Núñez-Vivanco, G., & Caballero, J. (2020). LigRMSD: A web server for automatic structure matching and RMSD calculations among identical and similar compounds in protein-ligand docking. Bioinformatics (Oxford, England), 36(9), 2912–2914. https://doi.org/10.1093/bioinformatics/btaa018
  • Vera-Ramirez, L., Pérez-Lopez, P., Varela-Lopez, A., Ramirez-Tortosa, M., Battino, M., & Quiles, J. L. (2013). Curcumin and liver disease. BioFactors (Oxford, England), 39(1), 88–100. https://doi.org/10.1002/biof.1057
  • Walker, S., Wankell, M., Ho, V., White, R., Deo, N., Devine, C., Dewdney, B., Bhathal, P., Govaere, O., Roskams, T., Qiao, L., George, J., & Hebbard, L. (2019). Targeting mTOR and Src restricts hepatocellular carcinoma growth in a novel murine liver cancer model. PloS One, 14(2), e0212860. https://doi.org/10.1371/journal.pone.0212860
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, “ 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wang, Y., Nakajima, T., Gonzalez, F. J., & Tanaka, N. (2020). PPARs as metabolic regulators in the liver: Lessons from liver-specific PPAR-null mice. International Journal of Molecular Sciences, 21(6), 2061. https://doi.org/10.3390/ijms21062061
  • Wargasetia, T. L., Ratnawati, H., Widodo, N., & Widyananda, M. H. (2021). Bioinformatics study of sea cucumber peptides as antibreast cancer through inhibiting the activity of overexpressed protein (EGFR, PI3K, AKT1, and CDK4). Cancer Informatics, 20, 11769351211031864. https://doi.org/10.1177/11769351211031864
  • Westenberger, G., Sellers, J., Fernando, S., Junkins, S., Han, S. M., Min, K., & Lawan, A. (2021). Function of mitogen-activated protein kinases in hepatic inflammation. Journal of Cellular Signaling, 2(3), 172–180.
  • Widyananda, M. H., Wicaksono, S. T., Rahmawati, K., Puspitarini, S., Ulfa, S. M., Jatmiko, Y. D., Masruri, M., & Widodo, N. (2022). A potential anticancer mechanism of finger root (Boesenbergia rotunda) extracts against a breast cancer cell line. Scientifica, 2022, 9130217–9130252. https://doi.org/10.1155/2022/9130252
  • Wiegand, J., & Berg, T. (2013). The etiology, diagnosis and prevention of liver cirrhosis. Deutsches Arzteblatt International, 110(6), 85–91. https://doi.org/10.3238/arztebl.2013.0085
  • Yang, Z., Yuan, Z.-Z., & Ma, X.-L. (2021). Network pharmacology-based strategy and molecular docking to explore the potential mechanism of jintiange capsule for treating osteoporosis. Evidence-Based Complementary and Alternative Medicine: ECAM, 2021, 5338182. https://doi.org/10.1155/2021/5338182
  • Yao, Z.-J., Dong, J., Che, Y.-J., Zhu, M.-F., Wen, M., Wang, N.-N., Wang, S., Lu, A.-P., & Cao, D.-S. (2016). TargetNet: A web service for predicting potential drug–target interaction profiling via multi-target SAR models. Journal of Computer-Aided Molecular Design, 30(5), 413–424. https://doi.org/10.1007/s10822-016-9915-2
  • Yu, L., Liang, X., Wang, J., Ding, G., Tang, J., Xue, J., He, X., Ge, J., Jin, X., Yang, Z., Li, X., Yao, H., Yin, H., Liu, W., Yin, S., Sun, B., & Sheng, J. (2023). Identification of key biomarkers and candidate molecules in non-small-cell lung cancer by integrated bioinformatics analysis. Genetics Research, 2023, 6782732. https://doi.org/10.1155/2023/6782732
  • Yu, S., Gao, W., Zeng, P., Lu, M., Tan, X., Zhang, Z., Liu, Z., Hou, Z., & Liu, J. (2021). Study on the effects of polyphyllin I and curcumin on liver cancer based on the cross-action of ferroptosis and energy metabolism. Research Square, P REP RINT(Ver 1). https://doi.org/10.21203/rs.3.rs-929877/v1
  • Zhang, M., Lu, P., Zhao, F., Sun, X., Ma, W., Tang, J., Zhang, C., Ji, H., & Wang, X. (2023). Uncovering the molecular mechanisms of Curcumae Rhizoma against myocardial fibrosis using network pharmacology and experimental validation. Journal of Ethnopharmacology, 300(10), 115751. January. https://doi.org/10.1016/j.jep.2022.115751
  • Zhao, G., Hatting, M., Nevzorova, Y. A., Peng, J., Hu, W., Boekschoten, M. V., Roskams, T., Muller, M., Gassler, N., Liedtke, C., Davis, R. J., Cubero, F. J., & Trautwein, C. (2014). Jnk1 in murine hepatic stellate cells is a crucial mediator of liver fibrogenesis. Gut, 63(7), 1159–1172. https://doi.org/10.1136/gutjnl-2013-305507

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.