441
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Design, spectroscopic characterization, in silico and in vitro cytotoxic activity assessment of newly synthesized thymol Schiff base derivatives

, , , , & ORCID Icon
Received 17 Oct 2023, Accepted 30 Dec 2023, Published online: 10 Jan 2024

References

  • Aertgeerts, K., Skene, R., Yano, J., Sang, B.-C., Zou, H., Snell, G., Jennings, A., Iwamoto, K., Habuka, N., Hirokawa, A., Ishikawa, T., Tanaka, T., Miki, H., Ohta, Y., & Sogabe, S. (2011). Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein. The Journal of Biological Chemistry, 286(21), 18756–18765. https://doi.org/10.1074/jbc.M110.206193
  • Akkoç, S., Gök, Y., İlhan, İ. Ö., & Kayser, V. (2016). N-Methylphthalimide-substituted benzimidazolium salts and PEPPSI Pd–NHC complexes: Synthesis, characterization and catalytic activity in carbon–carbon bond-forming reactions. Beilstein Journal of Organic Chemistry, 12, 81–88. https://doi.org/10.3762/bjoc.12.9
  • Alam, M. M., Malebari, A. M., Nazreen, S., Neamatallah, T., Almalki, A. S. A., Elhenawy, A. A., Obaid, R. J., & Alsharif, M. A. (2021). Design, synthesis and molecular docking studies of thymol based 1,2,3-triazole hybrids as thymidylate synthase inhibitors and apoptosis inducers against breast cancer cells. Bioorganic & Medicinal Chemistry, 38, 116136. https://doi.org/10.1016/j.bmc.2021.116136
  • Almalki, A. S. A., Nazreen, S., Malebari, A. M., Ali, N. M., Elhenawy, A. A., Alghamdi, A. A. A., Ahmad, A., Alfaifi, S. Y. M., Alsharif, M. A., & Alam, M. M. (2021). Synthesis and biological evaluation of 1,2,3-triazole tethered thymol-1,3,4-oxadiazole derivatives as anticancer and antimicrobial agents. Pharmaceuticals, 14(9), 866. https://doi.org/10.3390/ph14090866
  • Başaran, E. (2021). Some aryl sulfonyl ester-based heterocyclic Schiff bases: Synthesis, structure elucidation and antioxidant activity. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(4), 2967–2978. https://doi.org/10.21597/jist.963129
  • Başaran, E., Çakmak, R., Akkoç, S., & Kaya, S. (2022a). Combined experimental and theoretical analyses on design, synthesis, characterization, and in vitro cytotoxic activity evaluation of some novel imino derivatives containing pyrazolone ring. Journal of Molecular Structure. 1265, 133427. https://doi.org/10.1016/j.molstruc.2022.133427
  • Başaran, E., Çakmak, R., Çinar, E., & Cevik, O. (2022b). Some heterocyclic hydrazone compounds: Synthesis, spectral characterization and anticancer activity study. Cumhuriyet Science Journal, 43(3), 437–442. https://doi.org/10.17776/csj.1099217
  • Başaran, E., Gamze Sogukomerogullari, H., Cakmak, R., Akkoc, S., Taskin-Tok, T., & Köse, A. (2022c). Novel chiral Schiff base Palladium (II), Nickel (II), Copper (II) and Iron (II) complexes: Synthesis, characterization, anticancer activity and molecular docking studies. Bioorganic Chemistry, 129, 106176. https://doi.org/10.1016/j.bioorg.2022.106176
  • Başaran, E. (2023a). Schiff base derivatives based on ampyrone as promising acetylcholinesterase inhibitors: Synthesis, spectral characterization, biological activity, and SwissADME predictions. Russian Journal of Bioorganic Chemistry. 49, 114–126. https://doi.org/10.1134/S1068162023010065
  • Başaran, E. (2023b). Synthesis, antioxidant, and anticholinesterase activities of novel N-arylsulfonyl hydrazones bearing sulfonate ester scaffold. Journal of the Chinese Chemical Society, 70(7), 1580–1590. https://doi.org/10.1002/jccs.202300151
  • Bruncko, M., Oost, T. K., Belli, B. A., Ding, H., Joseph, M. K., Kunzer, A., Martineau, D., McClellan, W. J., Mitten, M., Ng, S.-C., Nimmer, P. M., Oltersdorf, T., Park, C.-M., Petros, A. M., Shoemaker, A. R., Song, X., Wang, X., Wendt, M. D., Zhang, H., … Elmore, S. W. (2007). Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. Journal of Medicinal Chemistry, 50(4), 641–662. https://doi.org/10.1021/jm061152t
  • Cui, Z., Li, X., & Nishida, Y. (2014). Synthesis and bioactivity of novel carvacrol and thymol derivatives containing 5-phenyl-2-furan. Letters in Drug Design & Discovery, 11(7), 877–885. https://doi.org/10.2174/1570180811666140220005252
  • Deo, S. V. S., Sharma, J., & Kumar, S. (2022). GLOBOCAN 2020 report on global cancer burden: Challenges and opportunities for surgical oncologists. Annals of Surgical Oncology, 29(11), 6497–6500. https://doi.org/10.1245/s10434-022-12151-6
  • Esmer, Y. İ., Çınar, E., & Başaran, E. (2022). Design, docking, synthesis and biological evaluation of novel nicotinohydrazone derivatives as potential butyrylcholinesterase enzyme inhibitor. ChemistrySelect, 7(33), e202202771. https://doi.org/10.1002/slct.202202771
  • Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2019). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer, 144(8), 1941–1953. https://doi.org/10.1002/ijc.31937
  • Günsel, A., Bilgiçli, A. T., Tüzün, B., Pişkin, H., Atmaca, G. Y., Erdoğmuş, A., & Yarasir, M. N. (2019). Synthesis of tetra-substituted phthalocyanines bearing 2-(ethyl(m-tolyl)amino)ethanol: Computational and photophysicochemical studies. Journal of Photochemistry and Photobiology A: Chemistry, 373, 77–86. https://doi.org/10.1016/j.jphotochem.2018.12.038
  • Islam, M. T., Khalipha, A. B. R., Bagchi, R., Mondal, M., Smrity, S. Z., Uddin, S. J., Shilpi, J. A., & Rouf, R. (2019). Anticancer activity of Thymol: A literature‐based review and docking study with Emphasis on its anticancer mechanisms. IUBMB Life, 71(1), 9–19. https://doi.org/10.1002/iub.1935
  • Ismaili, H., Milella, L., Fkih-Tetouani, S., Ilidrissi, A., Camporese, A., Sosa, S., Altinier, G., Della Loggia, R., & Aquino, R. (2004). In vivo topical anti-inflammatory and in vitro antioxidant activities of two extracts of Thymus satureioides leaves. Journal of Ethnopharmacology, 91(1), 31–36. https://doi.org/10.1016/j.jep.2003.11.013
  • Javan, A. J., & Javan, M. J. (2014). Electronic structure of some thymol derivatives correlated with the radical scavenging activity: Theoretical study. Food Chemistry, 165, 451–459. https://doi.org/10.1016/j.foodchem.2014.05.073
  • Kamalı, A., Çakmak, R., & Boğa, M. (2022). Anticholinesterase and antioxidant activities of novel heterocyclic Schiff base derivatives containing an aryl sulfonate moiety. Journal of the Chinese Chemical Society, 69(4), 731–743. https://doi.org/10.1002/jccs.202100511
  • Kumar, D., Rawat, D.S, Beena  , Synthesis and antioxidant activity of thymol and carvacrol based Schiff bases,Bioorganic & Medicinal Chemistry Letters, 3. 23 (2013) 641–645, https://doi.org/10.1016/j.bmcl.2012.12.001
  • Kurt, B. Z., Gazioglu, I., Dag, A., Salmas, R. E., Kayık, G., Durdagi, S., & Sonmez, F. (2017). Synthesis, anticholinesterase activity and molecular modeling study of novel carbamate-substituted thymol/carvacrol derivatives. Bioorganic & Medicinal Chemistry, 25(4), 1352–1363. https://doi.org/10.1016/j.bmc.2016.12.037
  • Leiter, A., Veluswamy, R. R., & Wisnivesky, J. P. (2023). The global burden of lung cancer: Current status and future trends. Nature Reviews. Clinical Oncology, 20(9), 624–639. https://doi.org/10.1038/s41571-023-00798-3
  • McTigue, M., Murray, B. W., Chen, J. H., Deng, Y.-L., Solowiej, J., & Kania, R. S. (2012). Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 109(45), 18281–18289. 10.1073/pnas.1207759109
  • Merde, İ. B., Önel, G. T., Akkoç, S., Karaköy, Z., & Türkmenoğlu, B. (2023). Focusing on new piperazinyl‐methyl‐3 (2H) pyridazinone based derivatives: Design, synthesis, anticancer activity and computational studies. ChemistrySelect, 8(25), e202300910. https://doi.org/10.1002/slct.202300910
  • Merde, İ. B., Önel, G. T., Türkmenoğlu, B., Gürsoy, Ş., & Dilek, E. (2022). Pyridazinones containing the (4-methoxyphenyl) piperazine moiety as AChE/BChE inhibitors: Design, synthesis, in silico and biological evaluation. Medicinal Chemistry Research, 31(11), 2021–2031. https://doi.org/10.1007/s00044-022-02968-x
  • Morgan, E., Arnold, M., Gini, A., Lorenzoni, V., Cabasag, C. J., Laversanne, M., Vignat, J., Ferlay, J., Murphy, N., & Bray, F. (2023). Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut, 72(2), 338–344. https://doi.org/10.1136/gutjnl-2022-327736
  • Negi, B., & Rawat, D. S. (2018). Antituberculosis activity evaluation of thymol Schiff bases. Chemical Biology, 8, 244–254.
  • Nesterkina, M., & Kravchenko, I. (2017). Synthesis and pharmacological properties of novel esters based on monoterpenoids and glycine. Pharmaceuticals, 10(4), 47–55. https://doi.org/10.3390/ph10020047
  • Önem, E., Tüzün, B., & Akkoç, S. (2022). Anti-quorum sensing activity in Pseudomonas aeruginos a PA01 of benzimidazolium salts: Electronic, spectral and structural investigations as theoretical approach. Journal of Biomolecular Structure & Dynamics, 40(15), 6845–6856. https://doi.org/10.1080/07391102.2021.1890222
  • Park, J. H., Liu, Y., Lemmon, M. A., & Radhakrishnan, R. (2012). Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. The Biochemical Journal, 448(3), 417–423. https://doi.org/10.1042/BJ20121513
  • Rajput, J. D., Bagul, S. D., & Bendre, R. S. (2017). Design, synthesis, biological screenings and docking simulations of novel carvacrol and thymol derivatives containing acetohydrazone linkage. Research on Chemical Intermediates, 43(8), 4893–4906. https://doi.org/10.1007/s11164-017-2919-2
  • Rajput, J. D., Bagul, S. D., Hosamani, A. A., Patil, M. M., & Bendre, R. S. (2017). Synthesis, characterizations, biological activities and docking studies of novel dihydroxy derivatives of natural phenolic monoterpenoids containing azomethine linkage. Research on Chemical Intermediates, 43(10), 5377–5393. https://doi.org/10.1007/s11164-017-2933-4
  • Schrödinger, S. (2021a). Release 2021-2: Glide, LLC, New York, NY.
  • Schrödinger, S. (2021b). Release 2021-2: LigPrep, LLC, New York, NY.
  • Schrödinger, S. (2021c). Release 2021-2: Prime, LLC, New York, NY.
  • Schüz, J., & Espina, C. (2021). The eleventh hour to enforce rigorous primary cancer prevention. Oncol, 15, 741–743. https://doi.org/10.1002/18780261.12927
  • Sharma, P., Jhawat, V., Mathur, P., & Dutt, R. (2022). Innovation in cancer therapeutics and regulatory perspectives. Medical Oncology, 39(5), 76. https://doi.org/10.1007/s12032-022-01677-0
  • Souza, V. V. M. A., Almeida, J. M., Barbosa, L. N., & Silva, N. C. C. (2022). Citral, carvacrol, eugenol and thymol: Antimicrobial activity and its application in food. Journal of Essential Oil Research. 34(3), 181–194. https://doi.org/10.1080/10412905.2022.2032422
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: Cancer, J. Clin, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Türkmenoğlu, B. (2022). Investigation of novel compounds via in silico approaches of EGFR inhibitors as anticancer agents. Journal of the Indian Chemical Society. 99(8), 100601. https://doi.org/10.1016/j.jics.2022.100601
  • Verma, R. S., Padalia, R. C., Chanotiya, C. S., & Chauhan, A. (2010). Chemical investigation of the essential oil of Thymus linearis (Benth. ex Benth) from western Himalaya. Natural Product Research, 24(20), 1890–1896. https://doi.org/10.1080/14786411003754322
  • Wang, J.-J., Lei, K.-F., & Han, F. (2018). Tumor microenvironment: Recent advances in various cancer treatments. European Review for Medical and Pharmacological Sciences, 22(12), 3855–3864. https://doi.org/10.26355/eurrev20180615270
  • Yıldız, U., Şengül, A., Kandemir, I., Cömert, F., Akkoç, S., & Coban, B. (2019). The comparative study of the DNA binding and biological activities of the quaternized dicnq as a dicationic form and its platinum(II) heteroleptic cationic complex. Bioorganic Chemistry, 87, 70–77. https://doi.org/10.1016/j.bioorg.2019.03.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.