174
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Discovery of hematopoietic progenitor kinase 1 inhibitors using machine learning-based screening and free energy perturbation

, , , , , , & show all
Received 12 Sep 2023, Accepted 30 Dec 2023, Published online: 10 Jan 2024

References

  • Banerjee, S., Baidya, S. K., Ghosh, B., Nandi, S., Mandal, M., Jha, T., & Adhikari, N. (2023). Quantitative structural assessments of potential meprin β inhibitors by non-linear QSAR approaches and validation by binding mode of interaction analysis. New Journal of Chemistry, 47(15), 7051–7069. https://doi.org/10.1039/D2NJ04753E
  • Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: The cancer-immunity cycle. Immunity, 39(1), 1–10. https://doi.org/10.1016/j.immuni.2013.07.012
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1023/A:1022627411411
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Davis, M. I., Hunt, J. P., Herrgard, S., Ciceri, P., Wodicka, L. M., Pallares, G., Hocker, M., Treiber, D. K., & Zarrinkar, P. P. (2011). Comprehensive analysis of kinase inhibitor selectivity. Nature Biotechnology, 29(11), 1046–1051. https://doi.org/10.1038/nbt.1990
  • Degnan, A. P., Kumi, G. K., Allard, C. W., Araujo, E. V., Johnson, W. L., Zimmermann, K., Pearce, B. C., Sheriff, S., Futran, A., Li, X., Locke, G. A., You, D., Morrison, J., Parrish, K. E., Stromko, C., Murtaza, A., Liu, J. Q., Johnson, B. M., Vite, G. D., & Wittman, M. D. (2021). Discovery of orally active isofuranones as potent, selective inhibitors of hematopoetic progenitor kinase 1. ACS Medicinal Chemistry Letters, 12(3), 443–450. https://doi.org/10.1021/acsmedchemlett.0c00660
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Farkona, S., Diamandis, E. P., & Blasutig, I. M. (2016). Cancer immunotherapy: The beginning of the end of cancer? BMC Medicine, 14(1), 73. https://doi.org/10.1186/s12916-016-0623-5
  • Ferdous, M. R.-U., Abdalla, M., Yang, M., Xiaoling, L., & Song, Y. (2023). Berberine chloride (dual topoisomerase I and II inhibitor) modulate mitochondrial uncoupling protein (UCP1) in molecular docking and dynamic with in-vitro cytotoxic and mitochondrial ATP production. Journal of Biomolecular Structure & Dynamics, 41(5), 1704–1714. https://doi.org/10.1080/07391102.2021.2024255
  • Ferrero, E., Dunham, I., & Sanseau, P. (2017). In silico prediction of novel therapeutic targets using gene-disease association data. Journal of Translational Medicine, 15(1), 182. https://doi.org/10.1186/s12967-017-1285-6
  • Foran, J., Ravandi, F., Wierda, W., Garcia-Manero, G., Verstovsek, S., Kadia, T., Burger, J., Yule, M., Langford, G., Lyons, J., Ayrton, J., Lock, V., Borthakur, G., Cortes, J., & Kantarjian, H. (2014). A phase I and pharmacodynamic study of AT9283, a small-molecule inhibitor of aurora kinases in patients with relapsed/refractory leukemia or myelofibrosis. Clinical Lymphoma, Myeloma & Leukemia, 14(3), 223–230. https://doi.org/10.1016/j.clml.2013.11.001
  • Ge, H. Z., Peng, L. Z., Sun, Z., Liu, H. X., Shen, Y. L., & Yao, X. J. (2022). Discovery of novel HPK1 inhibitors through structure-based virtual screening. Frontiers in Pharmacology, 13, 850855. https://doi.org/10.3389/fphar.2022.850855
  • Hambleton, M., Hahn, H., Pleger, S. T., Kuhn, M. C., Klevitsky, R., Carr, A. N., Kimball, T. F., Hewett, T. E., Dorn, G. W., Koch, W. J., & Molkentin, J. D. (2006). Pharmacological- and gene therapy-based inhibition of protein kinase Cα/β enhances cardiac contractility and attenuates heart failure. Circulation, 114(6), 574–582. https://doi.org/10.1161/Circulationaha.105.592550
  • Hao, J., & Ho, T. K. (2019). Machine learning made easy: A review of scikit-learn package in python programming language. Journal of Educational and Behavioral Statistics, 44(3), 348–361. https://doi.org/10.3102/1076998619832248
  • Hu, M. C. T., Qiu, W. R., Wang, X. P., Meyer, C. F., & Tan, T. H. (1996). Human HPK1, a novel human hematopoietic progenitor kinase that activates the JNK/SAPK kinase cascade. Genes & Development, 10(18), 2251–2264. https://doi.org/10.1101/gad.10.18.2251
  • James, A. J., Smith, C. C., Litzow, M., Perl, A. E., Altman, J. K., Shepard, D., Kadokura, T., Souda, K., Patton, M., Lu, Z., Liu, C. F., Moy, S., Levis, M. J., & Bahceci, E. (2020). Pharmacokinetic profile of gilteritinib: A novel FLT-3 tyrosine kinase inhibitor. Clinical Pharmacokinetics, 59(10), 1273–1290. https://doi.org/10.1007/s40262-020-00888-w
  • Jeon, J. Y., Zhao, Q. H., Buelow, D. R., Phelps, M., Walker, A. R., Mims, A. S., Vasu, S., Behbehani, G., Blachly, J., Blum, W., Klisovic, R. B., Byrd, J. C., Garzon, R., Baker, S. D., & Bhatnagar, B. (2020). Preclinical activity and a pilot phase I study of pacritinib, an oral JAK2/FLT3 inhibitor, and chemotherapy in-ITD-positive AML. Investigational New Drugs, 38(2), 340–349. https://doi.org/10.1007/s10637-019-00786-4
  • Jeon, J., Nim, S., Teyra, J., Datti, A., Wrana, J. L., Sidhu, S. S., Moffat, J., & Kim, P. M. (2014). A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Medicine, 6(7), 57. https://doi.org/10.1186/s13073-014-0057-7
  • Karaman, M. W., Herrgard, S., Treiber, D. K., Gallant, P., Atteridge, C. E., Campbell, B. T., Chan, K. W., Ciceri, P., Davis, M. I., Edeen, P. T., Faraoni, R., Floyd, M., Hunt, J. P., Lockhart, D. J., Milanov, Z. V., Morrison, M. J., Pallares, G., Patel, H. K., Pritchard, S., Wodicka, L. M., & Zarrinkar, P. P. (2008). A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnology, 26(1), 127–132. https://doi.org/10.1038/nbt1358
  • Kimber, T. B., Chen, Y. H., & Volkamer, A. (2021). Deep learning in virtual screening: Recent applications and developments. International Journal of Molecular Sciences, 22(9), 4435. https://doi.org/10.3390/ijms22094435
  • Lanka, G., Begum, D., Banerjee, S., Adhikari, N., Yogeeswari, P., & Ghosh, B. (2023). Pharmacophore-based virtual screening, 3D QSAR, docking, ADMET, and MD simulation studies: An perspective for the identification of new potential HDAC3 inhibitors. Computers in Biology and Medicine, 166, 107481. https://doi.org/10.1016/j.compbiomed.2023.107481
  • Lasserre, R., Cuche, C., Blecher-Gonen, R., Libman, E., Biquand, E., Danckaert, A., Yablonski, D., Alcover, A., & Di Bartolo, V. (2011). Release of serine/threonine-phosphorylated adaptors from signaling microclusters down-regulates T cell activation. The Journal of Cell Biology, 195(5), 839–853. https://doi.org/10.1083/jcb.201103105
  • Laurie, S. A., Jonker, D. J., Edenfield, W. J., Stephenson, J., Keller, D., Hitron, M., Li, W., Li, Y. Z., Gada, K., Gao, Y., & Li, C. (2014). A phase 1 dose-escalation study of BBI503, a first-in-class cancer stemness kinase inhibitor in adult patients with advanced solid tumors. Journal of Clinical Oncology, 32(15_suppl), 2527–2527. https://doi.org/10.1200/jco.2014.32.15_suppl.2527
  • Ma, J. S., Sheridan, R. P., Liaw, A., Dahl, G. E., & Svetnik, V. (2015). Deep neural nets as a method for quantitative structure-activity relationships. Journal of Chemical Information and Modeling, 55(2), 263–274. https://doi.org/10.1021/ci500747n
  • Martínez-Chávez, A., Tibben, M. M., Broeders, J., Rosing, H., Schinkel, A. H., & Beijnen, J. H. (2020). Development and validation of an LC-MS/MS method for the quantitative analysis of milciclib in human and mouse plasma, mouse tissue homogenates and tissue culture medium. Journal of Pharmaceutical and Biomedical Analysis, 190, 113516. https://doi.org/10.1016/j.jpba.2020.113516
  • Reyad-Ul-Ferdous, M., & Song, Y. F. (2022). Baicalein modulates mitochondrial function by upregulating mitochondrial uncoupling protein-1 (UCP1) expression in brown adipocytes, cytotoxicity, and computational studies. International Journal of Biological Macromolecules, 222(Pt B), 1963–1973. https://doi.org/10.1016/j.ijbiomac.2022.09.285
  • Reyad-Ul-Ferdous, M., Abdalla, M., & Song, Y. F. (2022a). Glycyrrhizin (Glycyrrhizic acid) HMGB1 (high mobility group box 1) inhibitor upregulate mitochondrial function in adipocyte, cell viability and in-silico study. Journal of Saudi Chemical Society, 26(3), 101454. https://doi.org/10.1016/j.jscs.2022.101454
  • Reyad-Ul-Ferdous, M., Song, Y. F., Zhang, H. Q., & Pandey, V. K. (2022b). Histone deacetylase (HDAC) inhibitor curcumin upregulates mitochondrial uncoupling protein1 (UCP1) and mitochondrial function in brown adipocytes, in-silico study and screening natural drug library. Journal of Saudi Chemical Society, 26(6), 101571. https://doi.org/10.1016/j.jscs.2022.101571
  • Riniker, S., Wang, Y., Jenkins, J. L., & Landrum, G. A. (2014). Using information from historical high-throughput screens to predict active compounds. Journal of Chemical Information and Modeling, 54(7), 1880–1891. https://doi.org/10.1021/ci500190p
  • Roth, G. J., Heckel, A., Brandl, T., Grauert, M., Hoerer, S., Kley, J. T., Schnapp, G., Baum, P., Mennerich, D., Schnapp, A., & Park, J. E. (2010). Design, synthesis, and evaluation of indolinones as inhibitors of the transforming growth factor β receptor I (TGFβRI). Journal of Medicinal Chemistry, 53(20), 7287–7295. https://doi.org/10.1021/jm100812a
  • Saka, H., Kitagawa, C., Kogure, Y., Takahashi, Y., Fujikawa, K., Sagawa, T., Iwasa, S., Takahashi, N., Fukao, T., Tchinou, C., Landers, D., & Yamada, Y. (2017). Safety, tolerability and pharmacokinetics of the fibroblast growth factor receptor inhibitor AZD4547 in Japanese patients with advanced solid tumours: A phase I study. Investigational New Drugs, 35(4), 451–462. https://doi.org/10.1007/s10637-016-0416-x
  • Sawasdikosol, S., & Burakoff, S. (2020). A perspective on HPK1 as a novel immuno-oncology drug target. eLife, 9, e55122. https://doi.org/10.7554/eLife.55122
  • Schöffski, P., Aftimos, P., Dumez, H., Deleporte, A., De Block, K., Costermans, J., Billiet, M., Meeus, M. A., Lee, C., Schnell, D., Goeldner, R. G., & Awada, A. (2016). A phase I study of two dosing schedules of oral BI 847325 in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 77(1), 99–108. https://doi.org/10.1007/s00280-015-2914-5
  • Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C., Žídek, A., Nelson, A. W. R., Bridgland, A., Penedones, H., Petersen, S., Simonyan, K., Crossan, S., Kohli, P., Jones, D. T., Silver, D., Kavukcuoglu, K., & Hassabis, D. (2020). Improved protein structure prediction using potentials from deep learning. Nature, 577(7792), 706–710. https://doi.org/10.1038/s41586-019-1923-7
  • Si, J. W., Shi, X. J., Sun, S. H., Zou, B., Li, Y. P., An, D. J., Lin, X. Y., Gao, Y., Long, F., Pang, B., Liu, X., Liu, T., Chi, W., Chen, L. G., Dimitrov, D. S., Sun, Y., Du, X. R., Yin, W., Gao, G. X., … Liao, X. B. (2020). Hematopoietic progenitor kinase1 (HPK1) mediates T cell dysfunction and is a druggable target for T cell-based immunotherapies. Cancer Cell, 38(4), 551–566.e511. https://doi.org/10.1016/j.ccell.2020.08.001
  • Steeghs, N., Eskens, F. A. L. M., Gelderblom, H., Verweij, J., Nortier, J. W. R., Ouwerkerk, J., van Noort, C., Mariani, M., Spinelli, R., Carpinelli, P., Laffranchi, B., & de Jonge, M. J. A. (2009). Phase I pharmacokinetic and pharmacodynamic study of the aurora kinase inhibitor danusertib in patients with advanced or metastatic solid tumors. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 27(30), 5094–5101. https://doi.org/10.1200/Jco.2008.21.6655
  • Sunami, Y., & Kleeff, J. (2019). Immunotherapy of pancreatic cancer. Progress in Molecular Biology and Translational Science, 164, 189–216. https://doi.org/10.1016/bs.pmbts.2019.03.006
  • Trott, O., & Olson, A. J. (2010). Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vara, B. A., Levi, S. M., Achab, A., Candito, D. A., Fradera, X., Lesburg, C. A., Kawamura, S., Lacey, B. M., Lim, J., Methot, J. L., Xu, Z. W., Xu, H. Y., Smith, D. M., Piesvaux, J. A., Miller, J. R., Bittinger, M., Ranganath, S. H., Bennett, D. J., DiMauro, E. F., & Pasternak, A. (2021). Discovery of diaminopyrimidine carboxamide HPK1 inhibitors as preclinical immunotherapy tool compounds. ACS Medicinal Chemistry Letters, 12(4), 653–661. https://doi.org/10.1021/acsmedchemlett.1c00096
  • Wang, L., Wu, Y. J., Deng, Y. Q., Kim, B., Pierce, L., Krilov, G., Lupyan, D., Robinson, S., Dahlgren, M. K., Greenwood, J., Romero, D. L., Masse, C., Knight, J. L., Steinbrecher, T., Beuming, T., Damm, W., Harder, E., Sherman, W., Brewer, M., … Abel, R. (2015). Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. Journal of the American Chemical Society, 137(7), 2695–2703. https://doi.org/10.1021/ja512751q
  • Xie, C., Liu, B., Song, Z., Yang, Y., Dai, M., Gao, Y., Yao, Y., Ding, C., Ai, J., & Zhang, A. (2023). Design, synthesis, and pharmacological evaluation of isoindoline analogues as new HPK1 inhibitors. Journal of Medicinal Chemistry, 66(23), 16201–16221. https://doi.org/10.1021/acs.jmedchem.3c01571
  • Yancey, M. F., Merritt, D. A., Lesman, S. P., Boucher, J. F., & Michels, G. M. (2010). Pharmacokinetic properties of toceranib phosphate (Palladia™, SU11654), a novel tyrosine kinase inhibitor, in laboratory dogs and dogs with mast cell tumors. Journal of Veterinary Pharmacology and Therapeutics, 33(2), 162–171. https://doi.org/10.1111/j.1365-2885.2009.01133.x
  • You, D., Hillerman, S., Locke, G., Chaudhry, C., Stromko, C., Murtaza, A., Fan, Y., Koenitzer, J., Chen, Y. L., Briceno, S., Bhadra, R., Duperret, E., Gullo-Brown, J., Gao, C., Zhao, D. D., Feder, J., Curtin, J., Degnan, A. P., Kumi, G., … Liu, J. Q. (2021). Enhanced antitumor immunity by a novel small molecule HPK1 inhibitor. Journal for ImmunoTherapy of Cancer, 9(1), e001402. https://doi.org/10.1136/jitc-2020-001402
  • Zhang, Q., Ding, S., & Zhang, H. L. (2017). Interactions between hematopoietic progenitor kinase 1 and its adaptor proteins (review). Molecular Medicine Reports, 16(5), 6472–6482. https://doi.org/10.3892/mmr.2017.7494
  • Zheng, X., Gao, H. T., Zhang, Y. B., Cui, X. G., Jia, R. R., Xue, J. L., Tang, W. B., Wang, Y., Li, H., Chen, X. F., & Wang, H. Y. (2021). Development of a rapid and sensitive UPLC-MS/MS assay for simultaneous quantitation of Vorolanib and its metabolite in human plasma and application to a pharmacokinetics study. Journal of Pharmaceutical and Biomedical Analysis, 199, 114034. https://doi.org/10.1016/j.jpba.2021.114034
  • Zhu, Q. S., Chen, N. N., Tian, X. J., Zhou, Y. L., You, Q. D., & Xu, X. L. (2022). Hematopoietic progenitor kinase 1 in tumor immunology: A medicinal chemistry perspective. Journal of Medicinal Chemistry, 65(12), 8065–8090. https://doi.org/10.1021/acs.jmedchem.2c00172

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.