130
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Copper(II)-photocatalyzed Hydrocarboxylation of Schiff bases with CO2: antimicrobial evaluation and in silico studies of Schiff bases and unnatural α-amino acids

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 11 Aug 2023, Accepted 30 Dec 2023, Published online: 08 Jan 2024

References

  • Abdelsalam, M. M., Bedair, M. A., Hassan, A. M., Heakal, B. H., Younis, A., Elbialy, Z. I., Badawy, M. A., Fawzy, H. E.-D., & Fareed, S. A. (2022). Green synthesis, electrochemical, and DFT studies on the corrosion inhibition of steel by some novel triazole Schiff base derivatives in hydrochloric acid solution. Arabian Journal of Chemistry, 15(1), 103491. https://doi.org/10.1016/j.arabjc.2021.103491
  • Adhikari, A., Bhattarai, B. R., Aryal, A., Thapa, N., Puja, K., Adhikari, A., Maharjan, S., Chanda, P. B., Regmi, B. P., & Parajuli, N. (2021). Reprogramming natural proteins using unnatural amino acids. RSC Advances, 11(60), 38126–38145. https://doi.org/10.1039/d1ra07028b
  • Akitsu, T., & Einaga, Y. (2005). trans-Bis (2, 2-diphenylethylamine-κN) bis (5, 5-diphenylhydantoinato-κN3) copper (II) and its chloroform disolvate. Acta Crystallographica. Section C, Crystal Structure Communications, 61(Pt 4), m183–m186. https://doi.org/10.1107/S010827010500209X
  • Akman, F. (2019). A density functional theory study based on monolignols: Molecular structure, HOMO-LUMO analysis, molecular electrostatic potential. transport, 1, 2.
  • Alajmi, M. F., Rehman, M. T., Hussain, A., & Rather, G. M. (2018). Pharmacoinformatics approach for the identification of polo-like kinase-1 inhibitors from natural sources as anti-cancer agents. International Journal of Biological Macromolecules, 116, 173–181. https://doi.org/10.1016/j.ijbiomac.2018.05.023
  • Alpaslan, G., & Macit, M. (2014). Crystal structure, spectroscopic characterization and density functional studies of (E)-1-((3-methoxyphenylimino) methyl) naphthalen-2-ol. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 121, 372–380. https://doi.org/10.1016/j.saa.2013.10.111
  • Andres, R., Fielding, D., Marland, G., Boden, T., Kumar, N., & Kearney, A. (1999). Carbon dioxide emissions from fossil‐fuel use, 1751–1950. Tellus B: Chemical and Physical Meteorology, 51(4), 759–765. https://doi.org/10.1034/j.1600-0889.1999.t01-3-00002.x
  • Antypenko, L. M., Kovalenko, S. I., Los’, T. S., & Rebec’, O. L. (2017). Synthesis and characterization of novel N‐(Phenyl, Benzyl, Hetaryl)‐2‐([1, 2, 4] triazolo [1, 5‐c] Quinazolin‐2‐ylthio) Acetamides by spectral data, antimicrobial activity, molecular docking and QSAR studies. Journal of Heterocyclic Chemistry, 54(2), 1267–1278. https://doi.org/10.1002/jhet.2702
  • Arshadi, S., Banaei, A., Ebrahimiasl, S., Monfared, A., & Vessally, E. (2019). Solvent-free incorporation of CO 2 into 2-oxazolidinones: A review. RSC Advances, 9(34), 19465–19482. https://doi.org/10.1039/c9ra00551j
  • B. Yaragatti, N., V Kulkarni, M., Na Kumar, G., & N Gururow, T. (2012). Novel De-Acylative ring opening of 3-acetyl and 3-bromo acetyl coumarins. Letters in Organic Chemistry, 9, 594–597.
  • Badea, G.-I., & Radu, G. L. (2018). Carboxylic acid: Key role in life sciences. BoD–Books on Demand.
  • Baleizão, C., & Garcia, H. (2006). Chiral Salen complexes: An overview to recoverable and reusable homogeneous and heterogeneous catalysts. Chemical Reviews, 106(9), 3987–4043. https://doi.org/10.1021/cr050973n
  • Bandyopadhyay, M., Sengupta, U., Periyasamy, M., Mukhopadhyay, S., Hasija, A., Chopra, D., Özdemir, N., Said, M. A. & Bera, M. K. 2022. Cu (II)(PhOMe-Salophen) Complex: Greener pasture biological study, XRD/HAS interactions, and MEP. Russian Journal of Inorganic Chemistry, S2, 67, S114–S127. https://doi.org/10.1134/S0036023623700274
  • Bhavnani, S. M., & Ballow, C. H. (2000). New agents for gram-positive bacteria. Current Opinion in Microbiology, 3(5), 528–534. https://doi.org/10.1016/s1369-5274(00)00134-x
  • Braga, L. S., Leal, D. H., Kuca, K., & Ramalho, T. C. (2020). Perspectives on the role of the frontier effective-for-reaction molecular orbital (FERMO) in the study of chemical reactivity: An updated review. Current Organic Chemistry, 24(3), 314–331. https://doi.org/10.2174/1385272824666200204121044
  • Burešová, Z., Klikar, M., Mazúr, P., Mikešová, M., Kvíčala, J., Bystron, T., & Bureš, F. (2020). Redox property tuning in bipyridinium salts. Frontiers in Chemistry, 8, 631477. https://doi.org/10.3389/fchem.2020.631477
  • Canhota, F. P., Salomão, G. C., Carvalho, N. M., & Antunes, O. (2008). Cyclohexane oxidation catalyzed by 2, 2′-bipyridil Cu (II) complexes. Catalysis Communications, 9(1), 182–185. https://doi.org/10.1016/j.catcom.2007.05.040
  • Cantrill, C., Chaturvedi, P., Rynn, C., Schaffland, J. P., Walter, I., & Wittwer, M. B. (2020). Fundamental aspects of DMPK optimization of targeted protein degraders. Drug Discovery Today, 25(6), 969–982. https://doi.org/10.1016/j.drudis.2020.03.012
  • Casitas, A., & Ribas, X. (2013). The role of organometallic copper (III) complexes in homogeneous catalysis. Chemical Science, 4(6), 2301–2318. https://doi.org/10.1039/c3sc21818j
  • Chaudhari, B., Patel, H., Thakar, S., Ahmad, I., & Bansode, D. (2022). Optimizing the Sunitinib for cardio-toxicity and thyro-toxicity by scaffold hopping approach. In Silico Pharmacology, 10(1), 10. https://doi.org/10.1007/s40203-022-00125-1
  • Chen, Z., Kang, P., Zhang, M.-T., Stoner, B. R., & Meyer, T. J. (2013). Cu (ii)/Cu (0) electrocatalyzed CO 2 and H2O splitting. Energy & Environmental Science, 6(3), 813–817. https://doi.org/10.1039/c3ee24487c
  • Choudhary, N., Bee, S., Gupta, A., & Tandon, P. (2013). Comparative vibrational spectroscopic studies, HOMO–LUMO and NBO analysis of N-(phenyl)-2, 2-dichloroacetamide, N-(2-chloro phenyl)-2, 2-dichloroacetamide and N-(4-chloro phenyl)-2, 2-dichloroacetamide based on density functional theory. Computational and Theoretical Chemistry, 1016, 8–21. https://doi.org/10.1016/j.comptc.2013.04.008
  • Constantinescu, T., Lungu, C. N., & Lung, I. (2019). Lipophilicity as a central component of drug-like properties of chalchones and flavonoid derivatives. Molecules (Basel, Switzerland), 24(8), 1505. https://doi.org/10.3390/molecules24081505
  • Da Silva, C. M., Da SilvA, D. L., Modolo, L. V., Alves, R. B., De Resende, M. A., Martins, C. V., & De Fátima, Â. (2011). Schiff bases: A short review of their antimicrobial activities. Journal of Advanced Research, 2(1), 1–8. https://doi.org/10.1016/j.jare.2010.05.004
  • Das, S. K., Mahanta, S., TantI, B., Tag, H., & Hui, P. K. (2022). Identification of phytocompounds from Houttuynia cordata Thunb. As potential inhibitors for SARS-CoV-2 replication proteins through GC–MS/LC–MS characterization, molecular docking and molecular dynamics simulation. Molecular Diversity, 26(1), 365–388. https://doi.org/10.1007/s11030-021-10226-2
  • Dasmahapatra, U., Rajasekhar, S., Neelima, G., Maiti, B., Karuppasamy, R., Murali, P., Mm, B., & Chanda, K. (2023). In silico design and investigation of novel thiazetidine derivatives as potent inhibitors of PrpR in Mycobacterium tuberculosis. Chemistry & Biodiversity, 20(1), e202200925. https://doi.org/10.1002/cbdv.202200925
  • Delbari, A. S., Shahvelayati, A. S., Jodaian, V., & Amani, V. (2015). Mononuclear and dinuclear indium (III) complexes containing methoxy and hydroxy-bridge groups, nitrate anion and 4, 4′-dimethyl-2, 2′-bipyridine ligand: Synthesis, characterization, crystal structure determination, luminescent properties, and thermal analyses. Journal of the Iranian Chemical Society, 12(2), 223–232. https://doi.org/10.1007/s13738-014-0477-8
  • Engl, S., & Reiser, O. (2022). Copper-photocatalyzed ATRA reactions: Concepts, applications, and opportunities. Chemical Society Reviews, 51(13), 5287–5299. https://doi.org/10.1039/d2cs00303a
  • Erturk, A. G. (2020). Synthesis, structural identifications of bioactive two novel Schiff bases. Journal of Molecular Structure, 1202, 127299. https://doi.org/10.1016/j.molstruc.2019.127299
  • Fan, X., Gong, X., Ma, M., Wang, R., & Walsh, P. J. (2018). Visible light-promoted CO 2 fixation with imines to synthesize diaryl α-amino acids. Nature Communications, 9(1), 4936. https://doi.org/10.1038/s41467-018-07351-2
  • Fujihara, T., & Tsuji, Y. (2018). Cobalt-and rhodium-catalyzed carboxylation using carbon dioxide as the C1 source. Beilstein Journal of Organic Chemistry, 14, 2435–2460. https://doi.org/10.3762/bjoc.14.221
  • Fujihara, T., Xu, T., Semba, K., Terao, J., & Tsuji, Y. (2011). Copper‐catalyzed hydrocarboxylation of alkynes using carbon dioxide and hydrosilanes. Angewandte Chemie (International ed. in English), 50(2), 523–527. https://doi.org/10.1002/anie.201006292
  • Gordon, A. T., Abosede, O. O., Ntsimango, S., Hosten, E. C., Myeza, N., Van Eyk, A., Harmse, L., & Ogunlaja, A. S. (2022). Synthesis and anticancer evaluation of copper (II)-and manganese (II)-theophylline mixed ligand complexes. Polyhedron, 214, 115649. https://doi.org/10.1016/j.poly.2022.115649
  • Gordon, A. T., Abosede, O. O., Ntsimango, S., Van Vuuren, S., Hosten, E. C., & Ogunlaja, A. S. (2020). Synthesis, characterization, molecular docking and antimicrobial activity of copper (II) complexes of metronidazole and 1, 10 phenanthroline. Inorganica Chimica Acta, 510, 119744. https://doi.org/10.1016/j.ica.2020.119744
  • Gordon, A. T., Hosten, E. C., & Ogunlaja, A. S. (2022c). Cu (II)-catalysed hydrocarboxylation of imines utilizing CO2 to synthesize α-unsaturated aminocarboxylic acids. Pharmaceuticals, 15(10), 1240. https://doi.org/10.3390/ph15101240
  • Gümüş, A., Okumuş, V., & Gümüş, S. (2020). Synthesis, biological evaluation of antioxidant-antibacterial activities and computational studies of novel anthracene-and pyrene-based Schiff base derivatives. Turkish Journal of Chemistry, 44(4), 1200–1215. https://doi.org/10.3906/kim-2005-61
  • Hassan, A. S., Askar, A. A., Nossier, E. S., Naglah, A. M., Moustafa, G. O., & Al-Omar, M. A. (2019). Antibacterial evaluation, in silico characters and molecular docking of Schiff bases derived from 5-aminopyrazoles. Molecules (Basel, Switzerland), 24(17), 3130. https://doi.org/10.3390/molecules24173130
  • Hossain, A., Bhattacharyya, A., & Reiser, O. (2019). Copper’s rapid ascent in visible-light photoredox catalysis. Science (New York, N.Y.), 364(6439), eaav9713. https://doi.org/10.1126/science.aav9713
  • Huang, Y., Rong, C., Zhang, R., & Liu, S. (2017). Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory. Journal of Molecular Modeling, 23(1), 3. https://doi.org/10.1007/s00894-016-3175-x
  • Iakovenko, R., & Hlaváč, J. (2021). Visible light-mediated metal-free double bond deuteration of substituted phenylalkenes. Green Chemistry, 23(1), 440–446. https://doi.org/10.1039/D0GC03081C
  • Iskander, M. F., El-Sayed, L., & Zaki, K. I. (1979). Coordination compounds of hydrazine derivatives with transition metals, Part 17. Nickel (II) and cobalt (II) chelates with pyridine-2-aldehyde semi-and thiosemicarbazone. Transition Metal Chemistry, 4(4), 225–230. https://doi.org/10.1007/BF00619173
  • Jack, R. W., Tagg, J. R., & Ray, B. (1995). Bacteriocins of gram-positive bacteria. Microbiological Reviews, 59(2), 171–200. https://doi.org/10.1128/mr.59.2.171-200.1995
  • Kaes, C., Katz, A., & Hosseini, M. W. (2000). Bipyridine: The most widely used ligand. A review of molecules comprising at least two 2, 2 ‘-bipyridine units. Chemical Reviews, 100(10), 3553–3590. https://doi.org/10.1021/cr990376z
  • Kalgutkar, A. S., & Daniels, J. S. (2010). Carboxylic acids and their bioisosteres. In Metabolism, pharmacokinetics and toxicity of functional groups: Impact of chemical building blocks on ADMET (pp. 99–167).
  • Karl, T. R., Melillo, J. M., & Peterson, T. C. (2009). Global climate change impacts in the United States: A state of knowledge report from the US Global Change Research Program. Cambridge University Press.
  • Kose, L. S., Moteetee, A., & Van Vuuren, S. (2021). Ethnobotany, toxicity and antibacterial activity of medicinal plants used in the Maseru District of Lesotho for the treatment of selected infectious diseases. South African Journal of Botany, 143, 141–154. https://doi.org/10.1016/j.sajb.2021.07.048
  • Kuriki, R., Sekizawa, K., Ishitani, O., & Maeda, K. (2015). Visible‐light‐driven CO2 reduction with carbon nitride: Enhancing the activity of ruthenium catalysts. Angewandte Chemie (International ed. in English), 54(8), 2406–2409. https://doi.org/10.1002/anie.201411170
  • Lee, C. W., & Anson, F. C. (1984). Electron exchange between bis (1, 10-phenanthroline) copper (1+) adsorbed on graphite and bis (1, 10-phenanthroline) copper (2+) in solution. Inorganic Chemistry, 23(7), 837–844. https://doi.org/10.1021/ic00175a009
  • Li, B., Geoghegan, B. L., Wölper, C., Cutsail, G. E., & Schulz, S. (2021). Redox activity of noninnocent 2, 2′-bipyridine in zinc complexes: An experimental and theoretical study. ACS Omega, 6(28), 18325–18332. https://doi.org/10.1021/acsomega.1c02201
  • Liarou, E., Staniforth, M., Town, J. S., Marathianos, A., Grypioti, M., Li, Y., Chang, Y., Efstathiou, S., Hancox, E., Wemyss, A. M., Wilson, P., Jones, B. A., Aljuaid, M., Stavros, V. G., & Haddleton, D. M. (2020). UV irradiation of Cu-based complexes with aliphatic amine ligands as used in living radical polymerization. European Polymer Journal, 123, 109388. https://doi.org/10.1016/j.eurpolymj.2019.109388
  • Linfoot, C. L., Richardson, P., Hewat, T. E., Moudam, O., Forde, M. M., Collins, A., White, F., & Robertson, N. (2010). Substituted [Cu (I)(POP)(bipyridyl)] and related complexes: Synthesis, structure, properties and applications to dye-sensitised solar cells. Dalton Transactions (Cambridge, England: 2003), 39(38), 8945–8956. https://doi.org/10.1039/c0dt00190b
  • Lu, J., Xu, H., Xia, J., Ma, J., Xu, J., Li, Y., & Feng, J. (2020). D-and unnatural amino acid substituted antimicrobial peptides with improved proteolytic resistance and their proteolytic degradation characteristics. Frontiers in Microbiology, 11, 563030. https://doi.org/10.3389/fmicb.2020.563030
  • Magalhães, T., Da Silva, C., Dos Santos, L., Santos, D., Silva, L., Fuchs, B., Mylonakis, E., Martins, C.D., Resende‐Stoianoff, M., & De Fátima, Â. (2020). Cinnamyl Schiff bases: Synthesis, cytotoxic effects and antifungal activity of clinical interest. Letters in Applied Microbiology, 71(5), 490–497. https://doi.org/10.1111/lam.13356
  • Martín, R., Rodríguez Rivero, M., & Buchwald, S. L. (2006). Domino Cu‐catalyzed C― N coupling/hydroamidation: A highly efficient synthesis of nitrogen heterocycles. Angewandte Chemie, 118(42), 7237–7240. https://doi.org/10.1002/ange.200602917
  • Mehton, R. K., & Manrao, M. (2009). Condensation of cyano active methylene compounds with 2-hydroxybenzal-4-acetylaniline: A chemoselective reaction. National Academy Science Letters-India, 32, 231–233.
  • Mereshchenko, A. S., Olshin, P. K., Karimov, A. M., Skripkin, M. Y., Burkov, K. A., Tveryanovich, Y. S., & Tarnovsky, A. N. (2014). Photochemistry of copper (II) chlorocomplexes in acetonitrile: Trapping the ligand-to-metal charge transfer excited state relaxations pathways. Chemical Physics Letters, 615, 105–110. https://doi.org/10.1016/j.cplett.2014.10.016
  • Milne, P., Hô, M., & Weaver, D. F. (1999). Interaction of anticonvulsant drugs with metals: A semi-empirical molecular orbital study of phenytoin–zinc (II) complexation. Journal of Molecular Structure: THEOCHEM, 492(1-3), 19–28. https://doi.org/10.1016/S0166-1280(98)00601-0
  • Munawar, K. S., Ali, S., Muhammad, S., Ashfaq, M., Abbas, S. M., Tahir, M. N., Siddeeg, S. M., & Ahmed, G. (2023). Synthesis, crystal structure, Hirshfeld surface analysis, DNA binding, optical and nonlinear optical properties of Schiff bases derived from o-aminophenol. Journal of Molecular Structure, 1274, 134427. https://doi.org/10.1016/j.molstruc.2022.134427
  • Murali, M., & Palaniandavar, M. (1996). Mixed-ligand copper (II) complexes with positive redox potentials. Transition Metal Chemistry, 21(2), 142–148. https://doi.org/10.1007/BF00136544
  • Nada, H., Lee, K., Gotina, L., Pae, A. N., & Elkamhawy, A. (2022). Identification of novel discoidin domain receptor 1 (DDR1) inhibitors using E-pharmacophore modeling, structure-based virtual screening, molecular dynamics simulation and MM-GBSA approaches. Computers in Biology and Medicine, 142, 105217. https://doi.org/10.1016/j.compbiomed.2022.105217
  • Narayanan, N., & Nair, D. T. (2021). Ritonavir may inhibit exoribonuclease activity of nsp14 from the SARS-CoV-2 virus and potentiate the activity of chain terminating drugs. International Journal of Biological Macromolecules, 168, 272–278. https://doi.org/10.1016/j.ijbiomac.2020.12.038
  • Nisar, H., Attique, S. A., Javaid, A., Ain, Q. U., Butt, F., Zaid, M., Shahid, S., Hassan Nasir, M., & Sadaf, S. (2023). Comparative molecular docking analysis for analyzing the inhibitory effect of Anakinra and Ustekinumab against IL17F. Journal of Biomolecular Structure & Dynamics, 41(22), 13302–13313. https://doi.org/10.1080/07391102.2023.2173299
  • Oliveira, J., & Reygaert, W. C. (2019). Gram negative bacteria.
  • Pereira, F., Xiao, K., Latino, D. A., Wu, C., Zhang, Q., & Aires-De-Sousa, J. (2017). Machine learning methods to predict density functional theory B3LYP energies of HOMO and LUMO orbitals. Journal of Chemical Information and Modeling, 57(1), 11–21. https://doi.org/10.1021/acs.jcim.6b00340
  • Pham, T. N., Loupias, P., Dassonville‐Klimpt, A., & Sonnet, P. (2019). Drug delivery systems designed to overcome antimicrobial resistance. Medicinal Research Reviews, 39(6), 2343–2396. https://doi.org/10.1002/med.21588
  • Pimparkar, S., Dalvi, A. K., Koodan, A., Maiti, S., Al-Thabaiti, S. A., Mokhtar, M., Dutta, A., Lee, Y. R., & Maiti, D. (2021). Recent advances in the incorporation of CO 2 for C–H and C–C bond functionalization. Green Chemistry, 23(23), 9283–9317. https://doi.org/10.1039/D1GC02737A
  • Pinaka, A., & Vougioukalakis, G. C. (2015). Using sustainable metals to carry out “green” transformations: Fe-and Cu-catalyzed CO2 monetization. Coordination Chemistry Reviews, 288, 69–97. https://doi.org/10.1016/j.ccr.2015.01.010
  • Pour, N. T., Khalighi, A., Yousefi, M., & Amani, V. (2015). One-dimensional Barium coordination polymer with 2, 2'-Bipyridine-5, 5'-dicarboxylate ligand: Synthesis, spectroscopic characterization, thermal analyses, and crystal structure. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45(9), 1427–1433. https://doi.org/10.1080/15533174.2013.862822
  • Pozzi, C., Ferrari, S., Cortesi, D., Luciani, R., Stroud, R. M., Catalano, A., Costi, M. P., & Mangani, S. (2012). The structure of Enterococcus faecalis thymidylate synthase provides clues about folate bacterial metabolism. Acta Crystallographica. Section D, Biological Crystallography, 68(Pt 9), 1232–1241. https://doi.org/10.1107/S0907444912026236
  • Pradeepkiran, J. A., Sainath, S., & Shrikanya, K. (2021). In silico validation and ADMET analysis for the best lead molecules. Brucella Melitensis. Elsevier.
  • Rajavel, R., Vadivu, M. S., & Anitha, C. (2008). Synthesis, physical characterization and biological activity of some Schiff base complexes. E-Journal of Chemistry, 5(3), 620–626. https://doi.org/10.1155/2008/583487
  • Rejinthala, S., Endoori, S., Vemula, D., Bhandari, V., & Mondal, T. (2023). Novel pyrimidine-piperazine hybrids as potential antimicrobial agents: In-vitro antimicrobial and in-silico studies. Results in Chemistry, 5, 100951. https://doi.org/10.1016/j.rechem.2023.100951
  • Rohl, C. A., Strauss, C. E., Misura, K. M., & Baker, D. (2004). Protein structure prediction using Rosetta. In Methods in enzymology (Vol. 383, pp. 66–93). Academic Press.
  • Rosen, B. M., Jiang, X., Wilson, C. J., Nguyen, N. H., Monteiro, M. J., & Percec, V. (2009). The disproportionation of Cu (I) X mediated by ligand and solvent into Cu (0) and Cu (II) X2 and its implications for SET‐LRP. Journal of Polymer Science Part A: Polymer Chemistry, 47(21), 5606–5628. https://doi.org/10.1002/pola.23690
  • Sepandj, F., Ceri, H., Gibb, A., Read, R., & Olson, M. (2004). Minimum inhibitory concentration (MIC) versus minimum biofilm eliminating concentration (MBEC) in evaluation of antibiotic sensitivity of gram-negative bacilli causing peritonitis. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 24(1), 65–67.
  • Shakeela, K., Dithya, A. S., Rao, C. J., & Rao, G. R. (2015). Electrochemical behaviour of Cu (II)/Cu (I) redox couple in 1-hexyl-3-methylimidazolium chloride ionic liquid. Journal of Chemical Sciences, 127(1), 133–140. https://doi.org/10.1007/s12039-014-0758-x
  • Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H., & Mishra, A. K. (2008). Synthesis, characterization and biological activity of Schiff base analogues of indole-3-carboxaldehyde. European Journal of Medicinal Chemistry, 43(1), 160–165. https://doi.org/10.1016/j.ejmech.2007.03.022
  • Soroka, I. L., Shchukarev, A., Jonsson, M., Tarakina, N. V., & Korzhavyi, P. A. (2013). Cuprous hydroxide in a solid form: Does it exist? Dalton Transactions (Cambridge, England: 2003), 42(26), 9585–9594. https://doi.org/10.1039/c3dt50351h
  • Sudha, C., & Chakravarty, A. R. (1996). Synthesis, crystal structure and redox properties of µ-oxo-bis (µ-acetato)-diruthenium (III) complexes having 2, 2′-bipyridine and imidazole bases as terminal ligands. Journal of the Chemical Society, Dalton Transactions, (15), 3289–3292. https://doi.org/10.1039/DT9960003289
  • Tabti, K., Baammi, S., Elmchichi, L., Sbai, A., Maghat, H., Bouachrine, M., & Lakhlifi, T. (2022). Computational investigation of pyrrolidin derivatives as novel GPX4/MDM2–p53 inhibitors using 2D/3D-QSAR, ADME/toxicity, molecular docking, molecular dynamics simulations, and MM-GBSA free energy. Structural Chemistry, 33(4), 1019–1039. https://doi.org/10.1007/s11224-022-01903-5
  • Takaya, J., & Iwasawa, N. (2008). Hydrocarboxylation of allenes with CO2 catalyzed by silyl pincer-type palladium complex. Journal of the American Chemical Society, 130(46), 15254–15255. https://doi.org/10.1021/ja806677w
  • Tamma, P. D., Cosgrove, S. E., & Maragakis, L. L. (2012). Combination therapy for treatment of infections with gram-negative bacteria. Clinical Microbiology Reviews, 25(3), 450–470. https://doi.org/10.1128/CMR.05041-11
  • Taraszkiewicz, A., Grinholc, M., Bielawski, K. P., Kawiak, A., & Nakonieczna, J. (2013). Imidazoacridinone derivatives as efficient sensitizers in photoantimicrobial chemotherapy. Applied and Environmental Microbiology, 79(12), 3692–3702. https://doi.org/10.1128/AEM.00748-13
  • Thai, T., Salisbury, B. H., & Zito, P. M. (2021). Ciprofloxacin. StatPearls [Internet]. StatPearls Publishing.
  • Umesh, Kundu, D., Selvaraj, C., Singh, S. K., & Dubey, V. K. (2021). Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Journal of Biomolecular Structure and Dynamics, 39, 3428–3434. https://doi.org/10.1080/07391102.2020.1763202
  • Vafazadeh, R., Khaledi, B., Willis, A. C., & Namazian, M. (2011). Synthesis, crystal structure and DFT analysis of a new trinuclear complex of copper. Polyhedron, 30(11), 1815–1819. https://doi.org/10.1016/j.poly.2011.04.026
  • Vafazadeh, R., Namazian, M., Chavoshiyan, M., Willis, A. C., & Carr, P. D. (2017). Synthesis, X-ray structural characterization, and DFT calculations of binuclear mixed-ligand copper (II) complexes containing diamine, acetate and methacrylate ligands. Acta Chimica Slovenica, 64(3), 613–620. https://doi.org/10.17344/acsi.2017.3401
  • Xavier, A., & Srividhya, N, Chemistry, The Madura College, / Madurai Kamaraj University, India. (2014). Synthesis and study of Schiff base ligands. IOSR Journal of Applied Chemistry, 7(11), 06–15. https://doi.org/10.9790/5736-071110615
  • Xu, W., Ebadi, A. G., Toughani, M., & Vessally, E. (2021). Incorporation of CO2 into organosilicon compounds via CSi bond cleavage. Journal of CO2 Utilization, 43, 101358. https://doi.org/10.1016/j.jcou.2020.101358
  • Zore, G. B., Thakre, A. D., Rathod, V., & Karuppayil, S. M. (2011). Evaluation of anti‐Candida potential of geranium oil constituents against clinical isolates of Candida albicans differentially sensitive to fluconazole: Inhibition of growth, dimorphism and sensitization. Mycoses, 54(4), e99–e109. https://doi.org/10.1111/j.1439-0507.2009.01852.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.