83
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Diphenolic boldine, an aporphine alkaloid: inhibitory effect evaluation on α-glucosidase by molecular dynamics integrating enzyme kinetics

, , , , & ORCID Icon
Received 29 Mar 2023, Accepted 30 Dec 2023, Published online: 08 Jan 2024

References

  • Backhouse, N., Delporte, C., Givernau, M., Cassels, B. K., Valenzuela, A., & Speisky, H. (1994). Anti-inflammatory and antipyretic effects of boldine. Agents and Actions, 42(3–4), 114–117. https://doi.org/10.1007/BF01983475
  • Bannach, R., Valenzuela, A., Cassels, B. K., Nunez-Vergara, L. J., & Speisky, H. (1996). Cytoprotective and antioxidant effects of boldine on tert-butyl hydroperoxide-induced damage to isolated hepatocytes. Cell Biology and Toxicology, 12(2), 89–100. https://doi.org/10.1007/BF00143359
  • Chiba, S. (1997). Molecular mechanism in α-glucosidase and glucoamylase. Bioscience, Biotechnology, and Biochemistry, 61(8), 1233–1239. https://doi.org/10.1271/bbb.61.1233
  • Gao, H., & Kawabata, J. (2008). Aminoresorcinol is a potent α-glucosidase inhibitor. Bioorganic & Medicinal Chemistry Letters, 18(2), 812–815. https://doi.org/10.1016/j.bmcl.2007.11.032
  • Gong, Y., Qin, X. Y., Zhai, Y. Y., Hao, H., Lee, J., & Park, Y. D. (2017). Inhibitory effect of hesperetin on α-glucosidase: MD simulation integrating inhibition kinetics. International Journal of Biological Macromolecules, 101, 32–39. https://doi.org/10.1016/j.ijbiomac.2017.03.072
  • Kim, T. R., Oh, S., Yang, J. S., Lee, S., Shin, S., & Lee, J. (2012). A simplified homology-model builder toward highly protein-like structures: An inspection of restraining potentials. Journal of Computational Chemistry, 33(24), 1927–1935. https://doi.org/10.1002/jcc.23024
  • Krentz, A. J Bailey, & C. J. (2005). Oral antidiabetic agents: Current role in type 2 diabetes mellitus. Drugs, 65(3), 385–411. 65 https://doi.org/10.2165/00003495-200565030-00005
  • Kringstein, P., & Cederbaum, A. (1995). Boldine prevents human liver microsomal lipid peroxidation and inactivation of cytochrome P4502E1. Free Radical Biology & Medicine, 18(3), 559–563. https://doi.org/10.1016/0891-5849(94)e0138-9
  • Li, X., Lü, Z. R., Shen, D., Zhan, Y., Yang, J. M., Park, Y. D., Zhou, H. M., Sheng, Q., & Lee, J. (2014). The inhibitory role of Co2+ on α-glucosidase: Inhibition kinetics and molecular dynamics simulation integration study. Process Biochemistry, 49(11), 1913–1919. https://doi.org/10.1016/j.procbio.2014.08.002
  • Li, X., Lü, Z. R., Wang, W., Han, X. P., Yang, J. M., Park, Y. D., Zhou, H. M., Sheng, Q., & Lee, J. (2015). Effect of Ba2+ on the activity and structure of α-glucosidase: Inhibition kinetics and molecular dynamics simulation. Process Biochemistry, 50(4), 582–588. https://doi.org/10.1016/j.procbio.2015.01.014
  • Li, Y. Q., Zhou, F., C., Gao, F., Bian, J. S., & Shan, F. (2009). Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of alpha-glucosidase. Journal of Agricultural and Food Chemistry, 57(24), 11463–11468. https://doi.org/10.1021/jf903083h
  • Luo, T., Lee, J., Lü, Z. R., Mu, H., Yue, L. M., Park, Y. D., & Ye, Z. M. (2016). Effect of cadmium ion on alpha-glucosidase: An inhibition kinetics and molecular dynamics simulation integration study. The Protein Journal, 35(3), 218–224. https://doi.org/10.1007/s10930-016-9664-z
  • Moghimi, S., Salarinejad, S., Toolabi, M., Firoozpour, L., Esmaeil Sadat Ebrahimi, S., Safari, F., Madani-Qamsari, F., Mojtabavi, S., Faramarzi, M. A., Karima, S., Pakrad, R., & Foroumadi, A. (2021). Synthesis, in-vitro evaluation, molecular docking, and kinetic studies of pyridazine-triazole hybrid system as novel α-glucosidase inhibitors. Bioorganic Chemistry, 109, 104670. https://doi.org/10.1016/j.bioorg.2021.104670
  • Moritoh, Y., Takeuchi, K., & Hazama, M. (2009). Chronic administration of voglibose, an alpha-glucosidase inhibitor, increases active glucagon-like peptide-1 levels by increasing its secretion and decreasing dipeptidyl peptidase-4 activity in ob/ob mice. The Journal of Pharmacology and Experimental Therapeutics, 329(2), 669–676. https://doi.org/10.1124/jpet.108.148056
  • Muthna, D., Cmielova, J., Tomsik, P., & Rezacova, M. (2013). Boldine and related aporphines: From antioxidant to antiproliferative properties. Natural Product Communications, 8(12), 1797–1800. PMID: 24555301.
  • Nyenwe, E. A., Jerkins, T. W., Umpierrez, G. E., & Kitabchi, A. E. (2011). Management of type 2 diabetes: Evolving strategies for the treatment of patients with type 2 diabetes. Metabolism Clinical and Experimental, 60(1), 1–23. https://doi.org/10.1016/j.metabol.2010.09.010
  • O'Brien, P., Carrasco-Pozo, C., & Speisky, H. (2006). Boldine and its antioxidant or health-promoting properties. Chemico-Biological Interactions, 159(1), 1–17. https://doi.org/10.1016/j.cbi.2005.09.002
  • Patil, P., Mandal, S., Tomar, S. K., & Anand, S. (2015). Food protein-derived bioactive peptides in management of type 2 diabetes. European Journal of Nutrition, 54(6), 863–880. https://doi.org/10.1007/s00394-015-0974-2
  • Peng, X., Zhang, G., Liao, Y., & Gong, D. (2016). Inhibitory kinetics and mechanism of kaempferol on α-glucosidase. Food Chemistry, 190, 207–215. https://doi.org/10.1016/j.foodchem.2015.05.088
  • Reuser, A. J., & Wisselaar, H. A. (1994). An evaluation of the potential side-effects of alpha-glucosidase inhibitors used for the management of diabetes mellitus. European Journal of Clinical Investigation, 24(S3), 19–24. https://doi.org/10.1111/j.1365-2362.1994.tb02251.x
  • Rosak, C., & Mertes, G. (2012). Critical evaluation of the role of acarbose in the treatment of diabetes: Patient considerations. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 5, 357–367. https://doi.org/10.2147/DMSO.S28340
  • Scheen, A. J. (2003). Is there a role for alpha-glucosidase inhibitors in the prevention of type 2 diabetes mellitus? Drugs, 63(10), 933–951. https://doi.org/10.2165/00003495-200363100-00002
  • Si, Y. X., Ji, S., Wang, W., Fang, N. Y., Jin, Q. X., Park, Y. D., Qian, G. Y., Lee, J. H., Han, Y., & Yin, S. J. (2013). Effects of boldine on tyrosinase: Inhibition kinetics and computational simulation. Process Biochemistry, 48(1), 152–161. https://doi.org/10.1016/j.procbio.2012.11.001
  • Speisky, H., & Cassels, B. K. (1994). Boldo and boldine: An emerging case of natural drug development. Pharmacological Research, 29(1), 1–12. https://doi.org/10.1016/1043-6618(94)80093-6
  • van de Laar, F. A., Lucassen, P. L., Akkermans, R. P., van de Lisdonk, E. H., Rutten, G. E., & van Weel, C. (2005). Alpha-glucosidase inhibitors for patients with type 2 diabetes: Results from a Cochrane systematic review and meta-analysis. Diabetes Care, 28(1), 154–163. https://doi.org/10.2337/diacare.28.1.154
  • Yan, J., Zhang, G., Pan, J., & Wang, Y. (2014). α-Glucosidase inhibition by luteolin: Kinetics, interaction and molecular docking. International Journal of Biological Macromolecules, 64, 213–223. https://doi.org/10.1016/j.ijbiomac.2013.12.007
  • Yee, H. S., & Fong, N. T. (1996). A review of the safety and efficacy of acarbose in diabetes mellitus. Pharmacotherapy, 16(5), 792–805. PMID: 8888075.
  • Youn, Y. C., Kwon, O. S., Han, E. S., Song, J. H., Shin, Y. K., & Lee, C. S. (2002). Protective effect of boldine on dopamine-induced membrane permeability transition in brain mitochondria and viability loss in PC12 cells. Biochemical Pharmacology, 63(3), 495–505. https://doi.org/10.1016/s0006-2952(01)00852-8
  • Yue, L. M., Lee, J., Zheng, L., Park, Y. D., Ye, Z. M., & Yang, J. M. (2017). Computational prediction integrating the inhibition kinetics of gallotannin on α-glucosidase. International Journal of Biological Macromolecules, 103, 829–838. https://doi.org/10.1016/j.ijbiomac.2017.05.106
  • Zeng, L., Ding, H., Hu, X., Zhang, G., & Gong, D. (2019). Galangin inhibits α-glucosidase activity and formation of non-enzymatic glycation products. Food Chemistry, 271, 70–79. https://doi.org/10.1016/j.foodchem.2018.07.148
  • Zheng, L., Lee, J., Yue, L. M., Lim, G. T., Yang, J. M., Ye, Z. M., & Park, Y. D. (2018). Inhibitory effect of pyrogallol on α-glucosidase: Integrating docking simulations with inhibition kinetics. International Journal of Biological Macromolecules, 112, 686–693. https://doi.org/10.1016/j.ijbiomac.2018.02.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.