126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing the potential of Psidium guajava derived phytoconstituents as anticholinesterase inhibitor to combat Alzheimer’s disease: an in-silico and in-vitro approach

ORCID Icon, &
Received 04 Sep 2023, Accepted 30 Dec 2023, Published online: 11 Jan 2024

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adewusi, E. A., & Steenkamp, V. (2011). In vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from southern Africa. Asian Pacific Journal of Tropical Medicine, 4(10), 829–835. https://doi.org/10.1016/S1995-7645(11)60203-4
  • Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6(1), 34984. https://doi.org/10.1038/srep34984
  • Ali, A., Masood, A., Khan, A. A., Zhu, F. Y., Cheema, M. A. R., Samad, A., Wadood, A., Khan, A., Yu, Q., Heng, W., Li, D., & Wei, D. Q. (2023). Comparative binding analysis of WGX50 and Alpha-M with APP family proteins APLP1 and APLP2 using structural-dynamics and free energy calculation approaches. Physical Chemistry Chemical Physics, 25(21), 14887–14897. https://doi.org/10.1039/d2cp06083c
  • Alomair, L., Mustafa, S., Jafri, M. S., Alharbi, W., Aljouie, A., Almsned, F., Alawad, M., Bokhari, Y. A., & Rashid, M. (2022). Molecular dynamics simulations to decipher the role of phosphorylation of SARS-CoV-2 nonstructural proteins (NSPs) in viral replication. Viruses, 14(11), 2436. https://doi.org/10.3390/v14112436
  • Amber (2020). Reference manual [Software]. Retrieved August 25, 2023, from https://ambermd.org/Manuals.php
  • Asen, N. D., Okagu, O. D., Udenigwe, C. C., & Aluko, R. E. (2022). In vitro inhibition of acetylcholinesterase activity by yellow field pea (Pisum sativum) protein-derived peptides as revealed by kinetics and molecular docking. Frontiers in Nutrition, 9, 1021893. https://doi.org/10.3389/fnut.2022.1021893
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Bhattacharjee, A., Debnath, S., Sikdar, P., & Bhattacharya, K. (2022). In silico screening, TLC bioautography and in vivo studies of Zanthoxylum armatum DC. (Indian Prickly Ash) extract as a potential neuroprotective agent. South African Journal of Botany, 150, 997–1010. https://doi.org/10.1016/j.sajb.2022.09.009
  • Bhattacharya, K., Bordoloi, R., Chanu, N. R., Kalita, R., Sahariah, B. J., & Bhattacharjee, A. (2022). In silico discovery of 3 novel quercetin derivatives against papain-like protease, spike protein, and 3C-like protease of SARS-CoV-2. Journal of Genetic Engineering and Biotechnology, 20(1), 43. https://doi.org/10.1186/s43141-022-00314-7
  • Bhojwani, H., & Joshi, U. (2017). Pharmacophore and docking guided virtual screening study for discovery of type I inhibitors of VEGFR-2 kinase. Current Computer-Aided Drug Design, 13(3), 186–207. https://doi.org/10.2174/1386207319666161214112536
  • Bhowmik, D., Sharma, R. D., Prakash, A., & Kumar, D. (2021). Identification of nafamostat and VR23 as COVID-19 drug candidates by targeting 3CLpro and PLpro. Journal of Molecular Structure, 1233, 130094. https://doi.org/10.1016/j.molstruc.2021.130094
  • Bjelkmar, P., Larsson, P., Cuendet, M. A., Hess, B., & Lindahl, E. (2010). Implementation of the charmm force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of Chemical Theory and Computation, 6(2), 459–466. https://doi.org/10.1021/ct900549r
  • Chaitanya, A. K., Reddy, I. B., P. Kumari, P. M., Zaveri, K., & Kaladhar, D. (2012). Homology modeling and structural analysis of DNA binding response regulator of Bacillus anthracis. International Journal of Scientific Research, 2(8), 32–34. https://doi.org/10.15373/22778179/AUG2013/11
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology, 1263(January 2015), 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Daswani, P. G., Gholkar, M. S., & Birdi, T. J. (2017). Psidium guajava: A single plant for multiple health problems of rural Indian population. Pharmacognosy Reviews, 11(22), 167–174. https://doi.org/10.4103/phrev.phrev_17_17
  • Dias, D. A., Urban, S., & Roessner, U. (2012). A Historical overview of natural products in drug discovery. Metabolites, 2(2), 303–336. https://doi.org/10.3390/metabo2020303
  • Dos Santos, T. C., Gomes, T. M., Pinto, B. A. S., Camara, A. L., & De Andrade Paes, A. M. (2018). Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Frontiers in Pharmacology, 9, 1192. https://doi.org/10.3389/fphar.2018.01192
  • Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9(1), 71. https://doi.org/10.1186/1741-7007-9-71
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Francis, P. T., Palmer, A. M., Snape, M., & Wilcock, G. K. (1999). The cholinergic hypothesis of Alzheimer’s disease: A review of progress. Journal of Neurology, Neurosurgery, and Psychiatry, 66(2), 137–147. https://doi.org/10.1136/jnnp.66.2.137
  • Gopalasatheeskumar, K. (2018). Significant role of Soxhlet extraction process in phytochemical research development of herbal formulations for diabetes view project. Mintage Journal of Pharmaceuitcal & Medical Sciences, 7(1), 43–47.
  • Grossberg, G. T. (2003). Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on. Current Therapeutic Research, Clinical and Experimental, 64(4), 216–235. https://doi.org/10.1016/S0011-393X(03)00059-6
  • Hospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry, 8, 37–47. https://doi.org/10.2147/AABC.S70333
  • Jamal, Q. M., Khan, M. I., Alharbi, A. H., Ahmad, V., & Yadav, B. S. (2023). Identification of natural compounds of the apple as inhibitors against cholinesterase for the treatment of Alzheimer’s disease: An in silico molecular docking simulation and ADMET study. Nutrients, 15(7), 1579. https://doi.org/10.3390/nu15071579
  • Joung, I. S., & Cheatham, T. E. (2008). Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. The Journal of Physical Chemistry. B, 112(30), 9020–9041. https://doi.org/10.1021/jp8001614
  • Kafle, A., Sangita Mohapatra, S., Reddy, I., & Chapagain, M. (2018). A review on medicinal properties of Psidium guajava. Journal of Medicinal Plants Studies, 6(4), 44–47. Retrieved from https://www.botanical-online.com/english/guava_characteristics.htm
  • Kagami, L. P., das Neves, G. M., Timmers, L. F. S. M., Caceres, R. A., & Eifler-Lima, V. L. (2020). Geo-measures: A PyMOL plugin for protein structure ensembles analysis. Computational Biology and Chemistry, 87, 107322. https://doi.org/10.1016/j.compbiolchem.2020.107322
  • Khanal, P., Zargari, F., Far, B. F., Kumar, D., R, M., Mahdi, Y. K., Jubair, N. K., Saraf, S. K., Bansal, P., Singh, R., Selvaraja, M., & Dey, Y. N. (2021). Integration of system biology tools to investigate huperzine A as an anti-Alzheimer agent. Frontiers in Pharmacology, 12, 785964. https://doi.org/10.3389/fphar.2021.785964
  • Kumar, M., Tomar, M., Amarowicz, R., Saurabh, V., Nair, M. S., Maheshwari, C., Sasi, M., Prajapati, U., Hasan, M., Singh, S., Changan, S., Prajapat, R. K., Berwal, M. K., & Satankar, V. (2021). Guava (Psidium guajava L.) leaves: Nutritional composition. Foods, 10(4), 752. https://doi.org/10.3390/foods10040752
  • Leite, T. B., Gomes, D., Miteva, M. A., Chomilier, J., Villoutreix, B. O., & Tufféry, P. (2007). Frog: A FRee Online druG 3D conformation generator. Nucleic Acids Research, 35(Web Server issue), W568–W572. https://doi.org/10.1093/nar/gkm289
  • Lobanov, M. I., Bogatyreva, N. S., & Galzitskaia, O. V. (2008). Radius of gyration is indicator of compactness of protein structure. Molekuliarnaia Biologiia, 42(4), 701–706. https://doi.org/10.1134/S0026893308040195
  • Mahmood Janlou, M. A., Sahebjamee, H., Yazdani, M., & Fozouni, L. (2023). Structure-based virtual screening and molecular dynamics approaches to identify new inhibitors of Staphylococcus aureus sortase A. Journal of Biomolecular Structure & Dynamics, 1–13. https://doi.org/10.1080/07391102.2023.2201863
  • Marucci, G., Buccioni, M., Ben, D. D., Lambertucci, C., Volpini, R., & Amenta, F. (2021). Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology, 190, 108352. https://doi.org/10.1016/j.neuropharm.2020.108352
  • Mukerjee, N., Das, A., Maitra, S., Ghosh, A., Khan, P., Alexiou, A., Dey, A., Baishya, D., Ahmad, F., Sachdeva, P., & Al-Muhanna, M. K. (2022). Dynamics of natural product Lupenone as a potential fusion inhibitor against the spike complex of novel Semliki forest virus. PLOS One, 17(2), e0263853. https://doi.org/10.1371/journal.pone.0263853
  • Naseer, S., Hussain, S., Naeem, N., Pervaiz, M., & Rahman, M. (2018). The phytochemistry and medicinal value of Psidium guajava (guava). Clinical Phytoscience, 4(1), 32. https://doi.org/10.1186/s40816-018-0093-8
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins, 55(2), 383–394. https://doi.org/10.1002/prot.20033
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Piao, L., Chen, Z., Li, Q., Liu, R., Song, W., Kong, R., & Chang, S. (2019). Molecular dynamics simulations of wild type and mutants of SAPAP in complexed with shank3. International Journal of Molecular Sciences, 20(1), 224. https://doi.org/10.3390/ijms20010224
  • Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520
  • Selvamuthukumaran, M., & Shi, J. (2017). Recent advances in extraction of antioxidants from plant by-products processing industries. Food Quality and Safety, 1(1), 61–81. https://doi.org/10.1093/fqs/fyx004
  • Stanciu, G. D., Luca, A., Rusu, R. N., Bild, V., Chiriac, S. I. B., Solcan, C., Bild, W., & Ababei, D. C. (2020). Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomolecules, 10(1), 40. https://doi.org/10.3390/biom10010040
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). Gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Vieira, T. H. F., Guimaraes, I. M., Silva, F. R., & Ribeiro, M. (2016). Alzheimer’s disease: Targeting the cholinergic system. Current Neuropharmacology, 14, 101–115.
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Zarotsky, V., Sramek, J. J., & Cutler, N. R. (2003). Galantamine hydrobromide: An agent for Alzheimer’s disease. American Journal of Health-System Pharmacy, 60(5), 446–452. https://doi.org/10.1093/ajhp/60.5.446
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.