1,538
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular modeling and simulation studies of SELEX-derived high-affinity DNA aptamers to the Ebola virus nucleoprotein

, , , , &
Received 19 Apr 2023, Accepted 03 Jan 2024, Published online: 13 Jan 2024

References

  • Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530–W534. https://doi.org/10.1093/NAR/GKAB294
  • Ahmad, B., Ashfaq, U. A., Rahman, M. U., Masoud, M. S., & Yousaf, M. Z. (2019). Conserved B and T cell epitopes prediction of Ebola virus glycoprotein for vaccine development: An immuno-informatics approach. Microbial Pathogenesis, 132, 243–253. https://doi.org/10.1016/J.MICPATH.2019.05.010
  • Ali, M. T., & Islam, M. O. (2015). A highly conserved GEQYQQLR epitope has been identified in the nucleoprotein of Ebola virus by using an in silico approach. Advances in Bioinformatics, 2015, 278197–278198. https://doi.org/10.1155/2015/278197
  • Antczak, M., Popenda, M., Zok, T., Sarzynska, J., Ratajczak, T., Tomczyk, K., Adamiak, R. W., & Szachniuk, M. (2016). New functionality of RNAComposer: Application to shape the axis of MiR160 precursor structure. Acta Biochimica Polonica, 63(4), 737–744. https://doi.org/10.18388/ABP.2016_1329
  • Bai, Y., Li, Y., Zhang, D., Wang, H., & Zhao, Q. (2017). Enhancing the affinity of anti-human α-thrombin 15-Mer DNA aptamer and anti-immunoglobulin e aptamer by PolyT extension. Analytical Chemistry, 89(17), 9467–9473. https://doi.org/10.1021/ACS.ANALCHEM.7B02313/SUPPL_FILE/AC7B02313_SI_001PDF.
  • Behrens, C., Binotti, B., Schmidt, C., Robinson, C. V., Chua, J. J. E., & Kühnel, K. (2013). Crystal structure of the human short coiled coil protein and insights into SCOC-FEZ1 complex formation. PLoS One, 8(10), e76355. https://doi.org/10.1371/JOURNAL.PONE.0076355
  • Biesiada, M., Pachulska-Wieczorek, K., Adamiak, R. W., & Purzycka, K. J. (2016). RNAComposer and RNA 3D structure prediction for nanotechnology. Methods, 103, 120–127. https://doi.org/10.1016/j.ymeth.2016.03.010
  • Biesiada, M., Purzycka, K. J., Szachniuk, M., Blazewicz, J., & Adamiak, R. W. (2016). Automated RNA 3D structure prediction with RNA composer. In Methods in molecular biology (Vol. 1490, pp. 199–215). Humana Press.
  • Bloom, D. E., & Cadarette, D. (2019). Infectious disease threats in the twenty-first century: Strengthening the global response. Frontiers in Immunology, 10, 549. https://doi.org/10.3389/FIMMU.2019.00549
  • Bradshaw, R. T., Patel, B. H., Tate, E. W., Leatherbarrow, R. J., & Gould, I. R. (2011). Comparing experimental and computational alanine scanning techniques for probing a prototypical protein-protein interaction. Protein Engineering, Design & Selection: PEDS, 24(1-2), 197–207. https://doi.org/10.1093/PROTEIN/GZQ047
  • Broadhurst, M. J., Brooks, T. J. G., & Pollock, N. R. (2016). Diagnosis of Ebola virus disease: Past, present, and future. Clinical Microbiology Reviews, 29(4), 773–793. https://doi.org/10.1128/CMR.00003-16
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/JCC.21287
  • Brown, J. H., Yang, Y., Reshetnikova, L., Gourinath, S., Süveges, D., Kardos, J., Hóbor, F., Reutzel, R., Nyitray, L., & Cohen, C. (2008). An unstable head-rod junction may promote folding into the compact off-state conformation of regulated myosins. Journal of Molecular Biology, 375(5), 1434–1443. https://doi.org/10.1016/j.jmb.2007.11.071
  • Brown, S. P., & Muchmore, S. W. (2009). Large-scale application of high-throughput molecular mechanics with Poisson-Boltzmann surface area for routine physics-based scoring of protein-ligand complexes. Journal of Medicinal Chemistry, 52(10), 3159–3165. https://doi.org/10.1021/JM801444X
  • Cao, C., Li, P., Liao, H., Wang, J., Tang, X., & Yang, L. (2020). Cys-functionalized AuNP substrates for improved sensing of the marine toxin STX by dynamic surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry, 412(19), 4609–4617. https://doi.org/10.1007/S00216-020-02710-9
  • Cataldo, R., Ciriaco, F., & Alfinito, E. (2018). A validation strategy for in silico generated aptamers. Computational Biology and Chemistry, 77, 123–130. https://doi.org/10.1016/J.COMPBIOLCHEM.2018.09.014
  • CDC. (2022). CDC Transmission | Ebola Hemorrhagic Fever | CDC. https://www.cdc.gov/vhf/ebola/transmission/index.html
  • Changula, K., Yoshida, R., Noyori, O., Marzi, A., Miyamoto, H., Ishijima, M., Yokoyama, A., Kajihara, M., Feldmann, H., Mweene, A. S., & Takada, A. (2013). Mapping of conserved and species-specific antibody epitopes on the Ebola virus nucleoprotein. Virus Research, 176(1-2), 83–90. https://doi.org/10.1016/J.VIRUSRES.2013.05.004
  • Choi, S. J., & Ban, C. (2016). Crystal structure of a DNA aptamer bound to PvLDH elucidates novel single-stranded DNA structural elements for folding and recognition. Scientific Reports, 6(1), 34998. https://doi.org/10.1038/srep34998
  • Chou, S. H., Chin, K. H., & Wang, A. H. J. (2005). DNA aptamers as potential anti-HIV agents. Trends in Biochemical Sciences, 30(5), 231–234. https://doi.org/10.1016/J.TIBS.2005.03.004
  • Cleri, F., Lensink, M. F., & Blossey, R. (2021). DNA aptamers block the receptor binding domain at the spike protein of SARS-CoV-2. Frontiers in Molecular Biosciences, 8, 713003. https://doi.org/10.3389/FMOLB.2021.713003/FULL
  • Cuesta-López, S., Menoni, H., Angelov, D., & Peyrard, M. (2011). Guanine radical chemistry reveals the effect of thermal fluctuations in gene promoter regions. Nucleic Acids Research, 39(12), 5276–5283. https://doi.org/10.1093/NAR/GKR096
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98, 5648. https://doi.org/10.1063/1.464397
  • Daura, X., Gademann, K., Jaun, B., Seebach, D., van Gunsteren, W. F., Mark, A. E., Rigault, A., Siegel, J., Harrowfield, J., & Chevrier, B. (1998). Peptide folding: When simulation meets experiment. Angewandte Chemie International Edition in English, 31, 1387–1404. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2
  • Deng, B., Lin, Y., Wang, C., Li, F., Wang, Z., Zhang, H., Li, X. F., & Le, X. C. (2014). Aptamer binding assays for proteins: The thrombin example—A review. Analytica Chimica Acta, 837, 1–15. https://doi.org/10.1016/J.ACA.2014.04.055
  • De Vries, S. J., Van Dijk, M., & Bonvin, A. M. J. J. (2010). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5(5), 883–897. https://doi.org/10.1038/nprot.2010.32
  • Devi, A., & Chaitanya, N. S. N. (2021). Designing of peptide aptamer targeting the receptor-binding domain of spike protein of SARS-CoV-2: An in silico study. Molecular Diversity, 26(1), 157–169. https://doi.org/10.1007/s11030-020-10171-6
  • Dong, S., Yang, P., Li, G., Liu, B., Wang, W., Liu, X., Xia, B., Yang, C., Lou, Z., Guo, Y., & Rao, Z. (2015). Insight into the Ebola virus nucleocapsid assembly mechanism: Crystal structure of Ebola virus nucleoprotein core domain at 1.8 Å resolution. Protein & Cell, 6(5), 351–362. https://doi.org/10.1007/S13238-015-0163-3/FIGURES/5
  • Dunker, A. K., Babu, M. M., Barbar, E., Blackledge, M., Bondos, S. E., Dosztányi, Z., Dyson, H. J., Forman-Kay, J., Fuxreiter, M., Gsponer, J., Han, K.-H., Jones, D. T., Longhi, S., Metallo, S. J., Nishikawa, K., Nussinov, R., Obradovic, Z., Pappu, R. V., Rost, B., … Uversky, V. N. (2013). What’s in a name? Why these proteins are intrinsically disordered. Intrinsically Disordered Proteins, 1(1), e24157. https://doi.org/10.4161/idp.24157
  • Ebola Detection Using Rapid Tests and ELISA Kits for Humans and Animals. (2022). https://www.prnewswire.com/news-releases/eboladetection-using-rapid-tests-and-elisa-kits-forhumans-and-animals-369183957.html
  • Elskens, J. P., Elskens, J. M., & Madder, A. (2020). Chemical modification of aptamers for increased binding affinity in diagnostic applications: Current status and future prospects. International Journal of Molecular Sciences, 21(12), 4522. https://doi.org/10.3390/IJMS21124522
  • Emami, N., Pakchin, P. S., & Ferdousi, R. (2020). Computational predictive approaches for interaction and structure of aptamers. Journal of Theoretical Biology, 497, 110268. https://doi.org/10.1016/J.JTBI.2020.110268
  • Gall, T., Le; Romero, P. R., Cortese, M. S., Uversky, V. N., & Dunker, A. K. (2012). Intrinsic disorder in the protein data bank. Journal of Biomolecular Structure & Dynamics, 24(4), 325–342. https://doi.org/10.1080/07391102.2007.10507123
  • Gao, J., Chen, Z., Mao, L., Zhang, W., Wen, W., Zhang, X., & Wang, S. (2019). Electrochemiluminescent aptasensor based on resonance energy transfer system between CdTe quantum dots and cyanine dyes for the sensitive detection of ochratoxin A. Talanta, 199, 178–183. https://doi.org/10.1016/J.TALANTA.2019.02.044
  • Gao, S., Hu, B., Zheng, X., Cao, Y., Liu, D., Sun, M., Jiao, B., & Wang, L. (2016). Gonyautoxin 1/4 aptamers with high-affinity and high-specificity: From efficient selection to aptasensor application. Biosensors & Bioelectronics, 79, 938–944. https://doi.org/10.1016/J.BIOS.2016.01.032
  • Gao, S., Hu, W., Zheng, X., Cai, S., & Wu, J. (2019). Functionalized aptamer with an antiparallel G-quadruplex: Structural remodeling, recognition mechanism, and diagnostic applications targeting CTGF. Biosensors & Bioelectronics, 142, 111475. https://doi.org/10.1016/j.bios.2019.111475
  • Gelinas, A. D., Davies, D. R., & Janjic, N. (2016). Embracing proteins: Structural themes in aptamer–protein complexes. Current Opinion in Structural Biology, 36, 122–132. https://doi.org/10.1016/J.SBI.2016.01.009
  • Gilson, M. K., & Zhou, H. X. (2007). Calculation of protein-ligand binding affinities. Annual Review of Biophysics and Biomolecular Structure, 36(1), 21–42. https://doi.org/10.1146/ANNUREV.BIOPHYS.36.040306.132550
  • Goda, T., & Miyahara, Y. (2020). Label-free monitoring of histone acetylation using aptamer-functionalized field-effect transistor and quartz crystal microbalance sensors. Micromachines, 11(9), 820. https://doi.org/10.3390/MI11090820
  • Goudarzi, M., Fazeli, M., Azad, M., & Seyedjavadi, S. S. (2015). Survey of clinical features, pathogenesis and therapeutic options for Ebola haemorrhagic fever. Archives of Advances in Biosciences, 6, 145–152. https://doi.org/10.22037/JPS.V6I3.9788
  • GROMACS Gmx Hbond—GROMACS. (2019). 1 Documentation. https://manual.gromacs.org/2019.1/onlinehelp/gmx-hbond.html
  • Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R., & Hofacker, I. L. (2008). The Vienna RNA Websuite. Nucleic Acids Research, 36(Web Server issue), W70–W74. https://doi.org/10.1093/NAR/GKN188
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/CT700301Q.
  • Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., & Schuster, P. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie Chemical Monthly, 125(2), 167–188. https://doi.org/10.1007/BF00818163
  • Hong, S. L., Xiang, M. Q., Tang, M., Pang, D. W., & Zhang, Z. L. (2019). Ebola virus aptamers: From highly efficient selection to application on magnetism-controlled chips. Analytical Chemistry, 91(5), 3367–3373. https://doi.org/10.1021/ACS.ANALCHEM.8B04623/ASSET/IMAGES/LARGE/AC-2018-04623F_0006.JPEG
  • Hooft, R. W. W., Sander, C., & Vriend, G. (1996). Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins: Structure, Function, and Genetics, 26(4), 363–376. https://doi.org/10.1002/(SICI)1097-0134(199612)26:4
  • Hooft, R. W. W., Vriend, G., Sander, C., & Abola, E. E. (1996). Errors in protein structures. Nature, 381(6580), 272–272. https://doi.org/10.1038/381272a0.
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., De Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/NMETH.4067
  • Huang, Y., Xu, L., Sun, Y., & Nabel, G. J. (2002). The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Molecular Cell, 10(2), 307–316. https://doi.org/10.1016/S1097-2765(02)00588-9
  • Huo, S., Massova, I., & Kollman, P. A. (2002). Computational alanine scanning of the 1:1 human growth hormone-receptor complex. Journal of Computational Chemistry, 23(1), 15–27. https://doi.org/10.1002/JCC.1153
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/JCC.20945
  • Judson, S., Prescott, J., & Munster, V. (2015). Understanding Ebola virus transmission. Viruses, 7(2), 511–521. https://doi.org/10.3390/V7020511
  • Kaur, H., Bruno, J. G., Kumar, A., & Sharma, T. K. (2018). Aptamers in the therapeutics and diagnostics pipelines. Theranostics, 8(15), 4016–4032. https://doi.org/10.7150/THNO.25958
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  • Kiley, M. P., Regnery, R. L., & Johnson, K. M. (1980). Ebola virus: Identification of virion structural proteins. The Journal of General Virology, 49(2), 333–341. https://doi.org/10.1099/0022-1317-49-2-333/CITE/REFWORKS
  • Kilgour, M., Liu, T., Walker, B. D., Ren, P., & Simine, L. (2021). E2EDNA: Simulation protocol for DNA aptamers with ligands. Journal of Chemical Information and Modeling, 61(9), 4139–4144. https://doi.org/10.1021/ACS.JCIM.1C00696
  • Kirchdoerfer, R. N., Saphire, E. O., & Ward, A. B. (2019). Cryo-EM structure of the Ebola virus nucleoprotein–RNA comple. Acta Crystallographica. Section F, Structural Biology Communications, 75(Pt 5), 340–347. https://doi.org/10.1107/S2053230X19004424
  • Ksiazek, T. G., West, C. P., Rollin, P. E., Jahrling, P. B., & Peters, C. J. (1999). ELISA for the detection of antibodies to Ebola viruses. The Journal of Infectious Diseases, 179 Suppl 1(s1), S192–S198. https://doi.org/10.1086/514313
  • Kuo, T. C., Lee, P. C., Tsai, C. W., & Chen, W. Y. (2013). Salt bridge exchange binding mechanism between streptavidin and its DNA aptamer – Thermodynamics and spectroscopic evidences. Journal of Molecular Recognition: JMR, 26(3), 149–159. https://doi.org/10.1002/JMR.2260
  • Lam, S. D., Das, S., Sillitoe, I., & Orengo, C. (2017). An overview of comparative modelling and resources dedicated to large-scale modelling of genome sequences. Acta Crystallographica. Section D, Structural Biology, 73(Pt 8), 628–640. https://doi.org/10.1107/S2059798317008920
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/ACS.JCTC.5B00935
  • Li, J., Zhu, J., Li, Y., Huang, T., & Li, Y. (2020). L-cysteine-modified magnetic microspheres for extraction and quantification of saxitoxin in rat plasma with liquid chromatography and tandem mass spectrometry. Journal of Separation Science, 43(12), 2429–2435. https://doi.org/10.1002/JSSC.202000070
  • Liao, X., Fu, H., Yan, T., & Lei, J. (2019). Electroactive metal–organic framework composites: Design and biosensing application. Biosensors & Bioelectronics, 146, 111743. https://doi.org/10.1016/J.BIOS.2019.111743
  • Lobanov, M. I., Bogatyreva, N. S., & Galzitskaia, O. V. (2008). Radius of gyration is indicator of compactness of protein structure. Molecular Biology, 42, 701–706.
  • Lorenz, R., Bernhart, S. H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F., & Hofacker, I. L. (2011). ViennaRNA package 2.0. Algorithms for Molecular Biology: AMB, 6(1), 26. https://doi.org/10.1186/1748-7188-6-26/TABLES/2
  • Mairal, T., Ozalp, V. C., Lozano Sánchez, P., Mir, M., Katakis, I., & O'Sullivan, C. K. (2008). Aptamers: Molecular tools for analytical applications. Analytical and Bioanalytical Chemistry, 390(4), 989–1007. https://doi.org/10.1007/S00216-007-1346-4/FIGURES/5
  • Makiala, S., Mukadi, D., De Weggheleire, A., Muramatsu, S., Kato, D., Inano, K., Gondaira, F., Kajihara, M., Yoshida, R., Changula, K., Mweene, A., Mbala-Kingebeni, P., Muyembe-Tamfum, J.-J., Masumu, J., Ahuka, S., & Takada, A. (2019). Clinical Evaluation of Quicknavitm-Ebola in the 2018 outbreak of Ebola virus disease in the Democratic Republic of the Congo. Viruses, 11(7), 589. https://doi.org/10.3390/v11070589.
  • Martin, D. R., Sibuyi, N. R., Dube, P., Fadaka, A. O., Cloete, R., Onani, M., Madiehe, A. M., & Meyer, M. (2021). Aptamer-based diagnostic systems for the rapid screening of TB at the point-of-care. Diagnostics, 11(8), 1352. https://doi.org/10.3390/DIAGNOSTICS11081352
  • Massova, I., & Kollman, P. A. (1999). Computational alanine scanning to probe protein-protein interactions: A novel approach to evaluate binding free energies. Journal of the American Chemical Society, 121(36), 8133–8143. https://doi.org/10.1021/JA990935J/SUPPL_FILE/JA990935J_S.PDF
  • Maszota-Zieleniak, M., Zsila, F., & Samsonov, S. A. (2021). Computational insights into heparin-small molecule interactions: Evaluation of the balance between stacking and non-stacking binding modes. Carbohydrate Research, 507, 108390. https://doi.org/10.1016/J.CARRES.2021.108390
  • Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., & Turner, D. H. (2004). Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proceedings of the National Academy of Sciences of the United States of America, 101(19), 7287–7292. https://doi.org/10.1073/PNAS.0401799101
  • Moran, Z., Rodriguez, W., Ahmadou, D., Soropogui, B., Magassouba, N. F., Kelly-Cirino, C., & Ben Amor, Y. (2020). Comparative performance study of three Ebola rapid diagnostic tests in Guinea. BMC Infectious Diseases, 20(1), 670. https://doi.org/10.1186/S12879-020-05339-2
  • Moreira, I. S., Fernandes, P. A., & Ramos, M. J. (2010). Protein-protein docking dealing with the unknown. Journal of Computational Chemistry, 31(2), 317–342. https://doi.org/10.1002/JCC.21276
  • Musyoka, T., & Bishop, Ö. T. (2019). South African Abietane diterpenoids and their analogs as potential antimalarials: Novel insights from hybrid computational approaches. Molecules, 24(22), 4036. https://doi.org/10.3390/MOLECULES24224036
  • Nagatoishi, S., Isono, N., Tsumoto, K., & Sugimoto, N. (2011). Loop residues of thrombin-binding DNA aptamer impact G-quadruplex stability and thrombin binding. Biochimie, 93(8), 1231–1238. https://doi.org/10.1016/J.BIOCHI.2011.03.013
  • Ni, S., Yao, H., Wang, L., Lu, J., Jiang, F., Lu, A., & Zhang, G. (2017). Chemical modifications of nucleic acid aptamers for therapeutic purposes. International Journal of Molecular Sciences, 18(8), 1683. https://doi.org/10.3390/IJMS18081683
  • Niikura, M., Ikegami, T., Saijo, M., Kurane, I., Miranda, M. E., & Morikawa, S. (2001). Detection of Ebola viral antigen by enzyme-linked immunosorbent assay using a novel monoclonal antibody to nucleoprotein. Journal of Clinical Microbiology, 39(9), 3267–3271. https://doi.org/10.1128/JCM.39.9.3267-3271.2001/ASSET/2863C2CC-44F0-422C-9DD2-7155EB44E166/ASSETS/GRAPHIC/JM0911453004.JPEG
  • Noda, T., Hagiwara, K., Sagara, H., & Kawaoka, Y. (2010). Characterization of the Ebola virus nucleoprotein-RNA complex. The Journal of General Virology, 91(Pt 6), 1478–1483. https://doi.org/10.1099/VIR.0.019794-0/CITE/REFWORKS
  • Paissoni, C., Spiliotopoulos, D., Musco, G., & Spitaleri, A. (2015). GMXPBSA 2.1: A GROMACS tool to perform MM/PBSA and computational alanine scanning. Computer Physics Communications, 186, 105–107. https://doi.org/10.1016/j.cpc.2014.09.010
  • PyMOL Setting:H_bond. (2022). [PyMOL documentation]. https://pymol.org/dokuwiki/doku.php?id=setting:h_bond
  • Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7(1), 95–99. https://doi.org/10.1016/S0022-2836(63)80023-6
  • Reddy, M., Reddy, C., Rathore, R., Erion, M., Aparoy, P., Reddy, R., & Reddanna, P. (2014). Free energy calculations to estimate ligand-binding affinities in structure-based drug design. Current Pharmaceutical Design, 20(20), 3323–3337. https://doi.org/10.2174/13816128113199990604.
  • Reusken, C., Niedrig, M., Pas, S., Anda, P., Baize, S., Charrel, R., Di Caro, A., Drosten, C., Fernandez-Garcia, M. D., Franco, L., Gunther, S., Leparc-Goffart, I., Martina, B., Pannetier, D., Papa, A., Sanchez-Seco, M. P., Vapalahti, O., & Koopmans, M. (2015). Identification of essential outstanding questions for an adequate European laboratory response to Ebolavirus Zaire West Africa 2014. Journal of Clinical Virology, 62, 124–134. https://doi.org/10.1016/J.JCV.2014.11.007
  • Rhinehardt, K. L., Mohan, R. V., & Srinivas, G. (2015). Computational modeling of peptide–aptamer binding. Methods in Molecular Biology, 1268, 313–333. https://doi.org/10.1007/978-1-4939-2285-7_14
  • Riccitelli, N. J., & Lupták, A. (2010). Computational discovery of folded RNA domains in genomes and in vitro selected libraries. Methods, 52(2), 133–140. https://doi.org/10.1016/J.YMETH.2010.06.005
  • Rifai, E. A., Van Dijk, M., Vermeulen, N. P. E., Yanuar, A., & Geerke, D. P. (2019). A Comparative linear interaction energy and MM/PBSA study on SIRT1-ligand binding free energy calculation. Journal of Chemical Information and Modeling, 59(9), 4018–4033. https://doi.org/10.1021/ACS.JCIM.9B00609/SUPPL_FILE/CI9B00609_SI_002.ZIP
  • Rohloff, J. C., Gelinas, A. D., Jarvis, T. C., Ochsner, U. A., Schneider, D. J., Gold, L., & Janjic, N. (2014). Nucleic acid ligands with protein-like side chains: Modified aptamers and their use as diagnostic and therapeutic agents. Molecular Therapy. Nucleic Acids, 3(10), e201. https://doi.org/10.1038/MTNA.2014.49
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/NAR/GKV315
  • Schubert, T., & Längst, G. (2015). Studying epigenetic interactions using microscale thermophoresis (MST). AIMS Biophysics, 2(3), 370–380. https://doi.org/10.3934/biophy.2015.3.370
  • Semper, A. E., Broadhurst, M. J., Richards, J., Foster, G. M., Simpson, A. J. H., Logue, C. H., Kelly, J. D., Miller, A., Brooks, T. J. G., Murray, M., & Pollock, N. R. (2016). Performance of the GeneXpert Ebola assay for diagnosis of Ebola virus disease in Sierra Leone: A field evaluation study. PLoS Medicine, 13(3), e1001980. https://doi.org/10.1371/JOURNAL.PMED.1001980
  • Shangguan, D., Tang, Z., Mallikaratchy, P., Xiao, Z., & Tan, W. (2007). Optimization and modifications of aptamers selected from live cancer cell lines. Chembiochem: A European Journal of Chemical Biology, 8(6), 603–606. https://doi.org/10.1002/cbic.200600532
  • Sharawy, M., & Consta, S. (2018). Effect of the chemical environment of the DNA guanine quadruplex on the free energy of binding of Na and K Ions. The Journal of Chemical Physics, 149(22), 225102. https://doi.org/10.1063/1.5050534
  • Shubham, S., Hoinka, J., Banerjee, S., Swanson, E., Dillard, J. A., Lennemann, N. J., Przytycka, T. M., Maury, W., & Nilsen-Hamilton, M. (2018). A 2’FY-RNA motif defines an aptamer for Ebolavirus secreted protein. Scientific Reports, 8(1), 12373. https://doi.org/10.1038/S41598-018-30590-8
  • Sino Biological Inc. (2022). ELISA test (Elisa for Ebola). SinoBiological ELISA for Ebola Virus Disease (EVD) Available online: http://www.elisa-antibody.com/ELISA-test/elisa-for-ebola-hf.html
  • Sugita, Y., Matsunami, H., Kawaoka, Y., Noda, T., & Wolf, M. (2018). Cryo-EM structure of the Ebola virus nucleoprotein–RNA complex at 3.6 Å resolution. Nature, 563(7729), 137–140. https://doi.org/10.1038/s41586-018-0630-0
  • Sykes, J., Holland, B., & Charleston, M. (2022). Unattained geometric configurations of secondary structure elements in protein structural space. Journal of Structural Biology, 214, 107870. https://doi.org/10.1016/j.jsb.2022.107870
  • Tan, S. Y., Acquah, C., Sidhu, A., Ongkudon, C. M., Yon, L. S., & Danquah, M. K. (2016). SELEX modifications and bioanalytical techniques for aptamer–target binding characterization. Critical Reviews in Analytical Chemistry, 46(6), 521–537. https://doi.org/10.1080/10408347.2016.1157014
  • Tao, X., Wang, X., Liu, B., & Liu, J. (2020). Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosensors & Bioelectronics, 168, 112537. https://doi.org/10.1016/J.BIOS.2020.112537
  • Uversky, V. N. (2017). How to predict disorder in a protein of interest. Methods in Molecular Biology, 1484, 137–158. https://doi.org/10.1007/978-1-4939-6406-2_11
  • Vainer, R., Cohen, S., Shahar, A., Zarivach, R., & Arbely, E. (2016). Structural basis for P53 Lys120-acetylation-dependent DNA-binding mode. Journal of Molecular Biology, 428(15), 3013–3025. https://doi.org/10.1016/J.JMB.2016.06.009
  • Vajda, T., & Perczel, A. (2016). The clear and dark sides of water: Influence on the coiled coil folding domain. Biomolecular Concepts, 7(3), 189–195. https://doi.org/10.1515/BMC-2016-0005/MACHINEREADABLECITATION/RIS
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). Gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/ACS.JCTC.1C00645/SUPPL_FILE/CT1C00645_SI_001.PDF
  • Van Vuren, P. J., Grobbelaar, A., Storm, N., Conteh, O., Konneh, K., Kamara, A., Sanne, I., & Paweska, J. T. (2015). Comparative evaluation of the diagnostic performance of the prototype cepheid GeneXpert Ebola assay. Journal of Clinical Microbiology, 54(2), 359–367. https://doi.org/10.1128/JCM.02724-15
  • Van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., Van Dijk, M., De Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/J.JMB.2015.09.014
  • Vriend, G. (1990). WHAT IF: A molecular modeling and drug design program. Journal of Molecular Graphics, 8(1), 52–56, 29. https://doi.org/10.1016/0263-7855(90)80070-V
  • Waddad, A. Y., Ramharack, P., Soliman, M. E. S., & Govender, T. (2019). Grafted hyaluronic acid N-acetyl-l-methionine for targeting of LAT1 receptor: In-silico, synthesis and microscale thermophoresis studies. International Journal of Biological Macromolecules, 125, 767–777. https://doi.org/10.1016/J.IJBIOMAC.2018.12.104
  • Wang, C., Greene, D., Xiao, L., Qi, R., & Luo, R. (2017). Recent developments and applications of the MMPBSA method. Frontiers in Molecular Biosciences, 4, 87. https://doi.org/10.3389/FMOLB.2017.00087/BIBTEX
  • Wang, T., Chen, L., Chikkanna, A., Chen, S., Brusius, I., Sbuh, N., & Veedu, R. N. (2021). Development of nucleic acid aptamer-based lateral flow assays: A robust platform for cost-effective point-of-care diagnosis. Theranostics, 11(11), 5174–5196. https://doi.org/10.7150/thno.56471
  • Wang, X., Gao, X., He, J., Hu, X., Li, Y., Li, X., Fan, L., & Yu, H. Z. (2019). Systematic truncating of aptamers to create high-performance graphene oxide (GO)-based aptasensors for the multiplex detection of mycotoxins. The Analyst, 144(12), 3826–3835. https://doi.org/10.1039/C9AN00624A
  • WHO Ebola Outbreak. (2021). North Kivu. https://www.who.int/emergencies/situations/ebola-2021-north-kivu
  • WHO. (2022). Ebola Virus Disease. https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease
  • WHO Laboratory Diagnosis of Ebola Virus Disease. (2022). https://apps.who.int/iris/bitstream/handle/10665/134009/WHO_EVD_GUIDANCE_L%20AB_14.1;jsessionid=A139094B4D95C076BB7FBC7032AD1F1D?sequence=1> 2014 (accessed on 19 January 2022)
  • Xie, Y. C., Eriksson, L. A., & Zhang, R. B. (2020). Molecular dynamics study of the recognition of ATP by nucleic acid aptamers. Nucleic Acids Research, 48(12), 6471–6480. https://doi.org/10.1093/NAR/GKAA428
  • Yan, A. C., & Levy, M. (2018). Aptamer-mediated delivery and cell-targeting aptamers: Room for improvement. Nucleic Acid Therapeutics, 28(3), 194–199. https://doi.org/10.1089/NAT.2018.0732
  • Zhang, H., Zhang, C., Li, Z., Li, C., Wei, X., Zhang, B., & Liu, Y. (2019). A new method of RNA secondary structure prediction based on convolutional neural network and dynamic programming. Frontiers in Genetics, 10, 467. https://doi.org/10.3389/FGENE.2019.00467/BIBTEX
  • Zhao, L., Wang, J., Su, D., Zhang, Y., Lu, H., Yan, X., Bai, J., Gao, Y., & Lu, G. (2020). The DNA controllable peroxidase mimetic activity of MoS2 nanosheets for constructing a robust colorimetric biosensor. Nanoscale, 12(37), 19420–19428. https://doi.org/10.1039/D0NR05649A
  • Zhu, G., Zhang, H., Jacobson, O., Wang, Z., Chen, H., Yang, X., Niu, G., & Chen, X. (2017). Combinatorial screening of DNA aptamers for molecular imaging of HER2 in cancer. Bioconjugate Chemistry, 28(4), 1068–1075. https://doi.org/10.1021/ACS.BIOCONJCHEM.6B00746
  • Zhu, X., Zhang, Y., Liu, M., & Liu, Y. (2021). 2D titanium carbide MXenes as emerging optical biosensing platforms. Biosensors & Bioelectronics, 171, 112730. https://doi.org/10.1016/J.BIOS.2020.112730
  • Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406–3415. https://doi.org/10.1093/nar/gkg595