193
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification, characterization, and CADD analysis of Plasmodium DMAP1 reveals it as a potential molecular target for new anti-malarial discovery

, & ORCID Icon
Received 04 Jul 2023, Accepted 30 Dec 2023, Published online: 12 Jan 2024

References

  • Balikagala, B., Fukuda, N., Ikeda, M., Katuro, O. T., Tachibana, S. I., Yamauchi, M., Opio, W., Emoto, S., Anywar, D. A., Kimura, E., Palacpac, N. M. Q., Odongo-Aginya, E. I., Ogwang, M., Horii, T., & Mita, T. (2021). Evidence of Artemisinin-resistant malaria in Africa. The New England Journal of Medicine, 385(13), 1163–1171. https://doi.org/10.1056/NEJMoa2101746
  • Bhardwaj, V. K., & Purohit, R. (2020). Computational investigation on effect of mutations in PCNA resulting in structural perturbations and inhibition of mismatch repair pathway. Journal of Biomolecular Structure & Dynamics, 38(7), 1963–1974. https://doi.org/10.1080/07391102.2019.1621210
  • BIOVIA Dassault Systèmes. (2019). Discovery Studio Modeling Environment, Release 2019. San Diego: Dassault Systemes.
  • Bonvin, A. M. (2006). Flexible protein–protein docking. Current Opinion in Structural Biology, 16(2), 194–200. https://doi.org/10.1016/j.sbi.2006.02.002
  • Cai, Y., Jin, J., Florens, L., Swanson, S. K., Kusch, T., Li, B., Workman, J. L., Washburn, M. P., Conaway, R. C., & Conaway, J. W. (2003). Identification of new subunits of the multiprotein mammalian TRRAP/TIP60-containing histone acetyltransferase complex. The Journal of Biological Chemistry, 280(14), 13665–13670. https://doi.org/10.1074/jbc.C300389200
  • Chin, C.-H., Chen, S.-H., Wu, H.-H., Ho, C.-W., Ko, M.-T., & Lin, C.-Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8(S4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Doyon, Y., Selleck, W., Lane, W. S., Tan, S., & Côté, J. (2004). Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Molecular and Cellular Biology, 24(5), 1884–1896. https://doi.org/10.1128/MCB.24.5.1884-1896.2004
  • Duffy, M. F., Selvarajah, S. A., Josling, G. A., & Petter, M. (2012). The role of chromatin in Plasmodium gene expression. Cellular Microbiology, 14(6), 819–828. https://doi.org/10.1111/j.1462-5822.2012.01777.x
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404. https://doi.org/10.1016/s0076-6879(97)77022-8
  • Frosch, A. E. P., Venkatesan, M., & Laufer, M. K. (2011). Patterns of chloroquine use and resistance in sub-Saharan Africa: A systematic review of household survey and molecular data. Malaria Journal, 10(1), 116. https://doi.org/10.1186/1475-2875-10-116
  • Garas, A., Schweitzer, F., & Havlin, S. (2012). Ak-shell decomposition method for weighted networks. New Journal of Physics, 14(8), 083030. https://doi.org/10.1088/1367-2630/14/8/083030
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41(Web Server issue), W384–388. https://doi.org/10.1093/nar/gkt458
  • Hillis, D. M., & Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42(2), 182–192. https://doi.org/10.1093/sysbio/42.2.182
  • Jaiswal, B., & Gupta, A. (2018). Modulation of nuclear receptor function by chromatin modifying factor TIP60. Endocrinology, 159(5), 2199–2215. https://doi.org/10.1210/en.2017-03190
  • Kawabata, T., Sugihara, Y., Fukunishi, Y., & Nakamura, H. (2013). LigandBox: A database for 3D structures of chemical compounds. Biophysics (Nagoya-Shi, Japan), 9(0), 113–121. https://doi.org/10.2142/biophysics.9.113
  • Khurana, J., Shrivastava, A., Singh, A., & Gupta, A. (2023). Exploring potential of Plasmodium RUVBL proteins as anti-malarial drug target. Journal of Biomolecular Structure & Dynamics, 41(2), 736–752. https://doi.org/10.1080/07391102.2021.2011418
  • Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research, 32(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gkh468
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Letunic, I., & Bork, P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301
  • Marchler-Bauer, A., Lu, S., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., Fong, J. H., Geer, L. Y., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Jackson, J. D., Ke, Z., Lanczycki, C. J., Lu, F., Marchler, G. H., Mullokandov, M., Omelchenko, M. V., … Bryant, S. H. (2011). CDD: A Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Research, 39(Database issue), D225–D229. https://doi.org/10.1093/nar/gkq1189
  • McGinnis, S., & Madden, T. L. (2004). BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 32(Web Server issue), W20–W25. https://doi.org/10.1093/nar/gkh435
  • Miao, J., Fan, Q., Cui, L., Li, X., Wang, H., Ning, G., Reese, J. C., & Cui, L. (2010). The MYST family histone acetyltransferase regulates gene expression and cell cycle in malaria parasite Plasmodium falciparum. Molecular Microbiology, 78(4), 883–902. https://doi.org/10.1111/j.1365-2958.2010.07371.x
  • Mohan, K. N., Ding, F., & Chaillet, J. R. (2011). Distinct roles of DMAP1 in mouse development. Molecular and Cellular Biology, 31(9), 1861–1869. https://doi.org/10.1128/MCB.01390-10
  • Negishi, M., Chiba, T., Saraya, A., Miyagi, S., & Iwama, A. (2009). Dmap1 plays an essential role in the maintenance of genome integrity through the DNA repair process. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 14(11), 1347–1357. https://doi.org/10.1111/j.1365-2443.2009.01352.x
  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300
  • Penicud, K., & Behrens, A. (2014). DMAP1 is an essential regulator of ATM activity and function. Oncogene, 33(4), 525–531. https://doi.org/10.1038/onc.2012.597
  • Rao, S. N., Head, M. S., Kulkarni, A., & LaLonde, J. M. (2007). Validation studies of the site-directed docking program LibDock. Journal of Chemical Information and Modeling, 47(6), 2159–2171. https://doi.org/10.1021/ci6004299
  • Rao, V. S., Srinivas, K., Sujini, G. N., & Kumar, G. N. S. (2014). Protein–protein interaction detection: Methods and analysis. International Journal of Proteomics, 2014, 147648–147612. https://doi.org/10.1155/2014/147648
  • Rose, P. W., Prlić, A., Altunkaya, A., Bi, C., Bradley, A. R., Christie, C. H., Costanzo, L. D., Duarte, J. M., Dutta, S., Feng, Z., Green, R. K., Goodsell, D. S., Hudson, B., Kalro, T., Lowe, R., Peisach, E., Randle, C., Rose, A. S., Shao, C., … Burley, S. K. (2017). The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Research, 45(D1), D271–D281. https://doi.org/10.1093/nar/gkw1000
  • Rountree, M. R., Bachman, K. E., & Baylin, S. B. (2000). DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genetics, 25(3), 269–277. https://doi.org/10.1038/77023
  • Saxena, H., & Gupta, A. (2022). Plasmodium falciparum PfRUVBL proteins bind at the TARE region and var gene promoter located in the subtelomeric region. Pathogens and Disease, 80(1), ftac018. https://doi.org/10.1093/femspd/ftac018
  • Sen, U., Nayak, A., Khurana, J., Sharma, D., & Gupta, A. (2020). Inhibition of PfMYST histone acetyltransferase activity blocks plasmodium falciparum growth and survival. Antimicrobial Agents and Chemotherapy, 65(1), e00953–20. https://doi.org/10.1128/AAC.00953-20
  • Sen, U., Saxena, H., Khurana, J., Nayak, A., & Gupta, A. (2018). Plasmodium falciparum RUVBL3 protein: A novel DNA modifying enzyme and an interacting partner of essential HAT protein MYST. Scientific Reports, 8(1), 10917. https://doi.org/10.1038/s41598-018-29137-8
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
  • Sievers, F., & Higgins, D. G. (2014). Clustal omega. Current Protocols in Bioinformatics, 48(1), 3.13.1–3.13.16. https://doi.org/10.1002/0471250953.bi0313s48
  • Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–D612. https://doi.org/10.1093/nar/gkaa1074
  • The Lancet. (2022). Malaria in 2022: A year of opportunity. Lancet (London, England), 399(10335), 1573. https://doi.org/10.1016/S0140-6736(22)00729-2
  • White, N. J. (2004). Antimalarial drug resistance. The Journal of Clinical Investigation, 113(8), 1084–1092. https://doi.org/10.1172/JCI21682
  • Wichers, J. S., Scholz, J. A. M., Strauss, J., Witt, S., Lill, A., Ehnold, L.-I., Neupert, N., Liffner, B., Lühken, R., Petter, M., Lorenzen, S., Wilson, D. W., Löw, C., Lavazec, C., Bruchhaus, I., Tannich, E., Gilberger, T. W., & Bachmann, A. (2019). Dissecting the Gene Expression, Localization, Membrane Topology, and Function of the Plasmodium falciparum STEVOR Protein Family. mBio, 10(4), e01500-19. https://doi.org/10.1128/mBio.01500-19
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–410. https://doi.org/10.1093/nar/gkm290
  • Wu, Y., & Brooks, C. L. III, (2022). Covalent docking in CDOCKER. Journal of Computer-Aided Molecular Design, 36(8), 563–574. https://doi.org/10.1007/s10822-022-00472-3
  • Xie, X.-Q S. (2010). Exploiting PubChem for virtual screening. Expert Opinion on Drug Discovery, 5(12), 1205–1220. https://doi.org/10.1517/17460441.2010.524924
  • Xin, H., Yoon, H.-G., Singh, P. B., Wong, J., & Qin, J. (2004). Components of a pathway maintaining histone modification and heterochromatin protein 1 binding at the pericentric heterochromatin in Mammalian cells. The Journal of Biological Chemistry, 279(10), 9539–9546. https://doi.org/10.1074/jbc.M311587200
  • Yuan, S., Chan, H. C. S., & Hu, Z. (2017). Using PyMOL as a platform for computational drug design. WIREs Computational Molecular Science, 7(2), e1298. https://doi.org/10.1002/wcms.1298
  • Zhang, C., Freddolino, P. L., & Zhang, Y. (2017). COFACTOR: Improved protein function prediction by combining structure, sequence and protein–protein interaction information. Nucleic Acids Research, 45(W1), W291–W299. https://doi.org/10.1093/nar/gkx366

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.