70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural investigation of vitamin K epoxide reductase domain-containing protein in Leptospira species: a potential target for the development of new leptospirosis treatments as an alternative to antibiotics

, , , &
Received 28 Sep 2023, Accepted 30 Dec 2023, Published online: 10 Jan 2024

References

  • Adler, B., Ed., (2015). Leptospira and leptospirosis. In Current topics in microbiology and immunology., no. 387 (1st ed.). Springer Berlin Heidelberg: Imprint: Springer. https://doi.org/10.1007/978-3-662-45059-8
  • Bader, M. W., Xie, T., Yu, C.-A., & Bardwell, J. C. A. (2000). Disulfide bonds are generated by quinone reduction. The Journal of Biological Chemistry, 275(34), 26082–26088. https://doi.org/10.1074/jbc.M003850200
  • Bader, M., Muse, W., Ballou, D. P., Gassner, C., & Bardwell, J. C. A. (1999). Oxidative protein folding is driven by the electron transport system. Cell, 98(2), 217–227. https://doi.org/10.1016/S0092-8674(00)81016-8
  • Barbieri, J. T., & Sun, J. (2005). ‘Pseudomonas aeruginosa ExoS and ExoT’, in Reviews of Physiology, Biochemistry and Pharmacology, vol. 152. In Reviews of physiology, biochemistry and pharmacology (vol. 152, pp. 79–92). Springer Berlin Heidelberg. https://doi.org/10.1007/s10254-004-0031-7
  • Bardwell, J. C. A., McGovern, K., & Beckwith, J. (1991). Identification of a protein required for disulfide bond formation in vivo. Cell, 67(3), 581–589. https://doi.org/10.1016/0092-8674(91)90532-4
  • Bardwell, J. C., Lee, J. O., Jander, G., Martin, N., Belin, D., & Beckwith, J. (1993). A pathway for disulfide bond formation in vivo. Proceedings of the National Academy of Sciences of the United States of America, 90(3), 1038–1042. https://doi.org/10.1073/pnas.90.3.1038
  • Benacer, D., Thong, K. L., Min, N. C., Bin Verasahib, K., Galloway, R. L., Hartskeerl, R. A., Souris, M., & Mohd Zain, S. N. (2016). Epidemiology of human leptospirosis in Malaysia, 2004–2012. Acta Tropica, 157, 162–168. https://doi.org/10.1016/j.actatropica.2016.01.031
  • Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., ‘Ostell, J., & Sayers, E. W. (2012). GenBank. Nucleic Acids Research, 41(Database issue), D36–D42. https://doi.org/10.1093/nar/gks1195
  • Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & Mackerell, A. D. (2012). Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ 1 and χ 2 dihedral angles. Journal of Chemical Theory and Computation, 8(9), 3257–3273. https://doi.org/10.1021/ct300400x
  • Bharti, A. R., Nally, J. E., Ricaldi, J. N., Matthias, M. A., Diaz, M. M., Lovett, M. A., Levett, P. N., Gilman, R. H., Willig, M. R., Gotuzzo, E., & Vinetz, J. M., Peru-United States Leptospirosis Consortium. (2003). Leptospirosis: A zoonotic disease of global importance. The Lancet. Infectious Diseases, 3(12), 757–771. https://doi.org/10.1016/S1473-3099(03)00830-2
  • Charon, N. W., Cockburn, A., Li, C., Liu, J., Miller, K. A., Miller, M. R., Motaleb, M. A., & Wolgemuth, C. W. (2012). The unique paradigm of spirochete motility and chemotaxis. Annual Review of Microbiology, 66(1), 349–370. https://doi.org/10.1146/annurev-micro-092611-150145
  • Chatron, N., Abi Khalil, R., Benoit, E., & Lattard, V. (2020). Structural investigation of the Vitamin K epoxide reductase (VKORC1) binding site with Vitamin K. Biochemistry, 59(13), 1351–1360. https://doi.org/10.1021/acs.biochem.9b01084
  • Chatron, N., Hammed, A., Benoît, E., & Lattard, V. (2019). Structural insights into phylloquinone (Vitamin K1), menaquinone (MK4, MK7), and menadione (Vitamin K3) binding to VKORC1. Nutrients, 11(1), 67. https://doi.org/10.3390/nu11010067
  • Costa, F., Hagan, J. E., Calcagno, J., Kane, M., Torgerson, P., Martinez-Silveira, M. S., Stein, C., Abela-Ridder, B., & Ko, A. I. (2015). Global morbidity and mortality of leptospirosis: A systematic review. PLoS Neglected Tropical Diseases, 9(9), e0003898. https://doi.org/10.1371/journal.pntd.0003898
  • Czogalla, K. J., Biswas, A., Wendeln, A.-C., Westhofen, P., Müller, C. R., Watzka, M., & Oldenburg, J. (2013). Human VKORC1 mutations cause variable degrees of 4-hydroxycoumarin resistance and affect putative warfarin binding interfaces. Blood, 122(15), 2743–2750. https://doi.org/10.1182/blood-2013-05-501692
  • Dailey, F. E., & Berg, H. C. (1993). Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 90(3), 1043–1047. https://doi.org/10.1073/pnas.90.3.1043
  • Dam, H. (1935). The antihaemorrhagic vitamin of the chick. The Biochemical Journal, 29(6), 1273–1285. https://doi.org/10.1042/bj0291273
  • Dutton, R. J., Boyd, D., Berkmen, M., & Beckwith, J. (2008). Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11933–11938. https://doi.org/10.1073/pnas.0804621105
  • Dutton, R. J., Wayman, A., Wei, J.-R., Rubin, E. J., Beckwith, J., & Boyd, D. (2010). Inhibition of bacterial disulfide bond formation by the anticoagulant warfarin. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 297–301. https://doi.org/10.1073/pnas.0912952107
  • Fraga, T. R., Carvalho, E., Isaac, L., & Barbosa, A. S. (2015). Leptospira and leptospirosis. In Molecular medical microbiology (pp. 1973–1990). Elsevier. https://doi.org/10.1016/B978-0-12-397169-2.00107-4
  • Godlewska, R., Dzwonek, A., Mikuła, M., Ostrowski, J., Pawłowski, M., Bujnicki, J. M., & Jagusztyn-Krynicka, E. K. (2006). Helicobacter pylori protein oxidation influences the colonization process. International Journal of Medical Microbiology: IJMM, 296(4–5), 321–324. https://doi.org/10.1016/j.ijmm.2005.11.010
  • Goulois, J., Chapuzet, A., Lambert, V., Chatron, N., Tchertanov, L., Legros, L., Benoît, E., & Lattard, V. (2016). Evidence of a target resistance to antivitamin K rodenticides in the roof rat Rattus rattus : Identification and characterisation of a novel Y25F mutation in the Vkorc1 gene: Target resistance to rodenticides in Rattus rattus. Pest Management Science, 72(3), 544–550. https://doi.org/10.1002/ps.4020
  • Guglielmini, J., Bourhy, P., Schiettekatte, O., Zinini, F., Brisse, S., & Picardeau, M. (2019). Genus-wide Leptospira core genome multilocus sequence typing for strain taxonomy and global surveillance. PLoS Neglected Tropical Diseases, 13(4), e0007374. https://doi.org/10.1371/journal.pntd.0007374
  • Haake, D. A., & Levett, P. N. (2015). ‘Leptospirosis in humans’, in Leptospira and Leptospirosis, vol. 387. In B. Adler (Ed.), Current topics in microbiology and immunology (vol. 387, pp. 65–97). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-45059-8_5
  • Harman, M. W., Dunham-Ems, S. M., Caimano, M. J., Belperron, A. A., Bockenstedt, L. K., Fu, H. C., Radolf, J. D., & Wolgemuth, C. W. (2012). The heterogeneous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 3059–3064. https://doi.org/10.1073/pnas.1114362109
  • Hodroge, A., Longin-Sauvageon, C., Fourel, I., Benoit, E., & Lattard, V. (2011). Biochemical characterization of spontaneous mutants of rat VKORC1 involved in the resistance to antivitamin K anticoagulants. Archives of Biochemistry and Biophysics, 515(1–2), 14–20. https://doi.org/10.1016/j.abb.2011.08.010
  • Hodroge, A., Matagrin, B., Moreau, C., Fourel, I., Hammed, A., Benoit, E., & Lattard, V. (2012). VKORC1 mutations detected in patients resistant to vitamin K antagonists are not all associated with a resistant VKOR activity. Journal of Thrombosis and Haemostasis: JTH, 10(12), 2535–2543. https://doi.org/10.1111/jth.12019
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Jämbeck, J. P. M., & Lyubartsev, A. P. (2012). Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. The Journal of Physical Chemistry. B, 116(10), 3164–3179. https://doi.org/10.1021/jp212503e
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kanagavel, M., Princy Margreat, A. A., Arunkumar, M., Prabhakaran, S. G., Shanmughapriya, S., & Natarajaseenivasan, K. (2016). Multilocus sequence typing (MLST) of leptospiral strains isolated from two geographic locations of Tamil Nadu, India. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 37, 123–128. https://doi.org/10.1016/j.meegid.2015.11.008
  • Kishigami, S., Akiyama, Y., & Ito, K. (1995). Redox states of DsbA in the periplasm of Escherichia coli. FEBS Letters, 364(1), 55–58. https://doi.org/10.1016/0014-5793(95)00354-C
  • Klein, M., Argemi, X., & Kepka, S. (2017). Céphalées fébriles aux urgences : un cas de leptospirose. Annales Françaises De Médecine D'urgence, 7(3), 194–196. https://doi.org/10.1007/s13341-017-0747-z
  • Kobayashi, T., Kishigami, S., Sone, M., Inokuchi, H., Mogi, T., & Ito, K. (1997). Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. Proceedings of the National Academy of Sciences of the United States of America, 94(22), 11857–11862. https://doi.org/10.1073/pnas.94.22.11857
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium. (2014). Open source drug discovery consortium, and A. Lynn, ‘g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations’. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Łasica, A. M., & Jagusztyn-Krynicka, E. K. (2007). The role of Dsb proteins of Gram-negative bacteria in the process of pathogenesis. FEMS Microbiology Reviews, 31(5), 626–636. https://doi.org/10.1111/j.1574-6976.2007.00081.x
  • Levett, P. N. (2001). Leptospirosis. Clinical Microbiology Reviews, 14(2), 296–326. https://doi.org/10.1128/CMR.14.2.296-326.2001
  • Li, C., Xu, H., Zhang, K., & Liang, F. T. (2010). Inactivation of a putative flagellar motor switch protein FliG1 prevents Borrelia burgdorferi from swimming in highly viscous media and blocks its infectivity. Molecular Microbiology, 75(6), 1563–1576. https://doi.org/10.1111/j.1365-2958.2010.07078.x
  • Liegeon, G., Delory, T., & Picardeau, M. (2018). Antibiotic susceptibilities of livestock isolates of leptospira. International Journal of Antimicrobial Agents, 51(5), 693–699. https://doi.org/10.1016/j.ijantimicag.2017.12.024
  • Martin, J. L., Bardwell, J. C. A., & Kuriyan, J. (1993). Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature, 365(6445), 464–468. https://doi.org/10.1038/365464a0
  • Miki, T., Okada, N., & Danbara, H. (2004). Two periplasmic disulfide oxidoreductases, DsbA and SrgA, target outer membrane protein SpiA, a component of the salmonella pathogenicity island 2 type III secretion system. The Journal of Biological Chemistry, 279(33), 34631–34642. https://doi.org/10.1074/jbc.M402760200
  • Miraglia, F., Matsuo, M., Morais, Z. M., Dellagostin, O. A., Seixas, F. K., Freitas, J. C., Hartskeerl, R., Moreno, L. Z., Costa, B. L., Souza, G. O., Vasconcellos, S. A., & Moreno, A. M. (2013). Molecular characterization, serotyping, and antibiotic susceptibility profile of Leptospira interrogans serovar Copenhageni isolates from Brazil. Diagnostic Microbiology and Infectious Disease, 77(3), 195–199. https://doi.org/10.1016/j.diagmicrobio.2013.08.003
  • Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: Making protein folding accessible to all. Nature Methods, 19(6), 679–682. https://doi.org/10.1038/s41592-022-01488-1
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Munoz-Zanzi, C., Groene, E., Morawski, B. M., Bonner, K., Costa, F., Bertherat, E., & Schneider, M. C. (2020). A systematic literature review of leptospirosis outbreaks worldwide, 1970–2012. Revista Panamericana De Salud Pública, 44, 1. https://doi.org/10.26633/RPSP.2020.78
  • Narayanavari, S. A., Kishore, N. M., & Sritharan, M. (2012). Structural analysis of the leptospiral sphingomyelinases: In silico and experimental evaluation of Sph2 as an Mg++-dependent sphingomyelinase. Journal of Molecular Microbiology and Biotechnology, 22(1), 24–34. https://doi.org/10.1159/000337013
  • Peek, J. A., & Taylor, R. K. (1992). Characterization of a periplasmic thiol: Disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America, 89(13), 6210–6214. https://doi.org/10.1073/pnas.89.13.6210
  • Perez, J., Brescia, F., Becam, J., Mauron, C., & Goarant, C. (2011). Rodent abundance dynamics and leptospirosis carriage in an area of hyper-endemicity in New Caledonia. PLoS Neglected Tropical Diseases, 5(10), e1361. https://doi.org/10.1371/journal.pntd.0001361
  • Picardeau, M. (2013). Diagnosis and epidemiology of leptospirosis. Medecine Et Maladies Infectieuses, 43(1), 1–9. https://doi.org/10.1016/j.medmal.2012.11.005
  • Poggi, D., Oliveira De Giuseppe, P., & Picardeau, M. (2010). Antibiotic resistance markers for genetic manipulations of Leptospira spp. Applied and Environmental Microbiology, 76(14), 4882–4885. https://doi.org/10.1128/AEM.00775-10
  • PyMOL. (2015). The PyMOL Molecular Graphics System, Version 1.8. Schrödinger, LLC.
  • Raja, V., & Natarajaseenivasan, K. (2015). Pathogenic, diagnostic and vaccine potential of leptospiral outer membrane proteins (OMPs). Critical Reviews in Microbiology, 41(1), 1–17. https://doi.org/10.3109/1040841X.2013.787387
  • Rajapakse, S., Rodrigo, C., Handunnetti, S. M., & Fernando, S. (2015). Current immunological and molecular tools for leptospirosis: Diagnostics, vaccine design, and biomarkers for predicting severity. Annals of Clinical Microbiology and Antimicrobials, 14(1), 2. https://doi.org/10.1186/s12941-014-0060-2
  • Sultan, S. Z., Pitzer, J. E., Miller, M. R., & Motaleb, M. A. (2010). Analysis of a Borrelia burgdorferi phosphodiesterase demonstrates a role for cyclic-di-guanosine monophosphate in motility and virulence: B. burgdorferi c-di-GMP influences motility and virulence. Molecular Microbiology, 77(1), 128–142. https://doi.org/10.1111/j.1365-2958.2010.07191.x
  • Suttie, J. W. (1985). Vitamin K-dependent carboxylase. Annual Review of Biochemistry, 54(1), 459–477. https://doi.org/10.1146/annurev.bi.54.070185.002331
  • Tahara, H., Takabe, K., Sasaki, Y., Kasuga, K., Kawamoto, A., Koizumi, N., & Nakamura, S. (2018). The mechanism of two-phase motility in the spirochete Leptospira : Swimming and crawling. Science Advances, 4(5), eaar7975. https://doi.org/10.1126/sciadv.aar7975
  • Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
  • The UniProt Consortium. (2023). UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Research, 51(D1), D523–D531. https://doi.org/10.1093/nar/gkac1052
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.