153
Views
0
CrossRef citations to date
0
Altmetric
Research Article

High-throughput computational screening for identification of potential hits against bacterial Acriflavine resistance protein B (AcrB) efflux pump

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 03 Nov 2023, Accepted 03 Jan 2024, Published online: 24 Jan 2024

References

  • Abdalla, M., Eltayb, W. A., El-Arabey, A. A., Singh, K., & Jiang, X. (2022). Molecular dynamic study of SARS-CoV-2 with various S protein mutations and their effect on thermodynamic properties. Computers in Biology and Medicine, 141, 105025. https://doi.org/10.1016/j.compbiomed.2021.105025
  • Abraham, E. P., & Chain, E. (1940). An enzyme from bacteria able to destroy penicillin. Nature, 146(3713), 837–837. https://doi.org/10.1038/146837a0
  • Al-Sehemi, A. G., Pannipara, M., Parulekar, R. S., Kilbile, J. T., Choudhari, P. B., & Shaikh, M. H. (2022). In silico exploration of binding potentials of anti SARS-CoV-1 phytochemicals against main protease of SARS-CoV-2. Journal of Saudi Chemical Society, 26(3), 101453. https://doi.org/10.1016/j.jscs.2022.101453
  • Al-Sehemi, A. G., Pannipara, M., Parulekar, R. S., Patil, O., Choudhari, P. B., Bhatia, M. S., Zubaidha, P. K., & Tamboli, Y. (2020). Potential of NO donor furoxan as SARS-CoV-2 main protease (Mpro) inhibitors: In silico analysis. Journal of Biomolecular Structure & Dynamics, 39(15), 5804–5818. https://doi.org/10.1080/07391102.2020.1790038
  • Al-Tawfiq, J. A., Momattin, H., Al-Ali, A. Y., Eljaaly, K., Tirupathi, R., Bilal Haradwala, M., Areti, S., Alhumaid, S., Rabaan, A. A., Al Mutair, A., & Schlagenhauf, P. (2022). Antibiotics in the pipeline: A literature review (2017-2020). Infection, 50(3), 553–564. https://doi.org/10.1007/s15010-021-01709-3
  • Aslam, B., Khurshid, M., Arshad, M. I., Muzammil, S., Rasool, M., Yasmeen, N., Shah, T., Chaudhry, T. H., Rasool, M. H., Shahid, A., Xueshan, X., & Baloch, Z. (2021). Antibiotic resistance: One health one world outlook. Frontiers in Cellular and Infection Microbiology, 11, 771510. https://doi.org/10.3389/fcimb.2021.771510
  • Atlam, F. M., Awad, M. K., & El-Bastawissy, E. A. (2014). Computational simulation of the effect of quantum chemical parameters on the molecular docking of HMG-CoA reductase drugs. Journal of Molecular Structure, 1075, 311–326. https://doi.org/10.1016/j.molstruc.2014.06.045
  • Bagal, V. K., Rathod, S. S., Mulla, M. M., Pawar, S. C., Choudhari, P. B., Pawar, V. T., & Mahuli, D. V. (2023). Exploration of bioactive molecules from Tinospora cordifolia and Actinidia deliciosa as an immunity modulator via molecular docking and molecular dynamics simulation study. Natural Product Research, 37(23), 4053–4057. https://doi.org/10.1080/14786419.2023.2165076
  • Bakale, R. D., Phatak, P. S., Rathod, S. S., Choudhari, P. B., Rekha, E. M., Sriram, D., Kulkarni, R. S., & Haval, K. P. (2023). In vitro and in silico exploration of newly synthesized triazolyl-isonicotinohydrazides as potent antitubercular agents. Journal of Biomolecular Structure & Dynamics, 1–20. https://doi.org/10.1080/07391102.2023.2291826
  • Bakale, R. D., Sulakhe, S. M., Kasare, S. L., Sathe, B. P., Rathod, S. S., Choudhari, P. B., Madhu Rekha, E., Sriram, D., & Haval, K. P. (2023). Design, synthesis and antitubercular assessment of 1, 2, 3-triazole incorporated thiazolylcarboxylate derivatives. Bioorganic & Medicinal Chemistry Letters, 97, 129551. https://doi.org/10.1016/j.bmcl.2023.129551
  • Basha, G. M., Parulekar, R. S., Al-Sehemi, A. G., Pannipara, M., Siddaiah, V., Kumari, S., Choudhari, P. B., & Tamboli, Y. (2022). Design and in silico investigation of novel Maraviroc analogues as dual inhibition of CCR-5/SARS-CoV-2 Mpro. Journal of Biomolecular Structure & Dynamics, 40(21), 11095–11110. https://doi.org/10.1080/07391102.2021.1955742
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews. Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380
  • Blanco, P., Hernando-Amado, S., Reales-Calderon, J. A., Corona, F., Lira, F., Alcalde-Rico, M., Bernardini, A., Sanchez, M. B., & Martinez, J. L. (2016). Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganisms, 4(1), 14. https://doi.org/10.3390/microorganisms4010014
  • Chetri, S. (2023). The culmination of multidrug-resistant efflux pumps vs. meager antibiotic arsenal era: Urgent need for an improved new generation of EPIs. Frontiers in Microbiology, 14, 1149418. https://doi.org/10.3389/FMICB.2023.1149418/BIBTEX
  • Choudhari, S., Patil, S. K., & Rathod, S. (2023). Identification of hits as anti-obesity agents against human pancreatic lipase via docking, drug-likeness, in-silico ADME(T), pharmacophore, DFT, molecular dynamics, and MM/PB(GB)SA analysis. Journal of Biomolecular Structure & Dynamics, 1–23. https://doi.org/10.1080/07391102.2023.2258407
  • da Cunha, B. R., Fonseca, L. P., & Calado, C. R. C. (2019). Antibiotic discovery: Where have we come from, where do we go? Antibiotics, 8(2), 45. https://doi.org/10.3390/antibiotics8020045
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules OPEN. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology, 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Dassault Systèmes. (2020). BIOVIA discovery studio visualizer (v20.1.0.19295).
  • Dean, A. S., Tosas Auguet, O., Glaziou, P., Zignol, M., Ismail, N., Kasaeva, T., & Floyd, K. (2022). 25 years of surveillance of drug-resistant tuberculosis: Achievements, challenges, and way forward. The Lancet Infectious Diseases, 22(7), e191–e196. https://doi.org/10.1016/S1473-3099(21)00808-2
  • Dey, S., Pratibha, M., Singh Dagur, H., & Rajakumara, E. (2023). Characterization of host receptor interaction with envelop protein of Kyasanur forest disease virus and predicting suitable epitopes for vaccine candidate. Journal of Biomolecular Structure & Dynamics, 1–11. https://doi.org/10.1080/07391102.2023.2218924
  • Dey, S., Rathod, S., Gumphalwad, K., Yadav, N., Choudhari, P., Rajakumara, E., Dhavale, R., & Mahuli, D. (2023). Exploring α, β-unsaturated carbonyl compounds against bacterial efflux pumps via computational approach. Journal of Biomolecular Structure & Dynamics, 1–14. https://doi.org/10.1080/07391102.2023.2246568
  • Du, D., Wang, Z., James, N. R., Voss, J. E., Klimont, E., Ohene-Agyei, T., Venter, H., Chiu, W., & Luisi, B. F. (2014). Structure of the AcrAB-TolC multidrug efflux pump. Nature, 509(7501), 512–515. https://doi.org/10.1038/nature13205
  • Du, D., Wang-Kan, X., Neuberger, A., van Veen, H. W., Pos, K. M., Piddock, L. J. V., & Luisi, B. F. (2018). Multidrug efflux pumps: Structure, function and regulation. Nature Reviews. Microbiology, 16(9), 523–539. https://doi.org/10.1038/s41579-018-0048-6
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Eicher, T., Cha, H. J., Seeger, M. A., Brandstätter, L., El-Delik, J., Bohnert, J. A., Kern, W. V., Verrey, F., Grütter, M. G., Diederichs, K., & Pos, K. M. (2012). Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proceedings of the National Academy of Sciences of the United States of America, 109(15), 5687–5692. https://doi.org/10.1073/PNAS.1114944109/-/DCSUPPLEMENTAL
  • Ejiofor, E. U., Ukpanukpong, R. U., Agwamba, E. C., Benjamin, I., Ahukwe, E. F., Maxwell, K. T., Edet, U. O., Bassey, I. U., Muozie, M. C., Manicum, A.-L E., & Louis, H. (2023). Reactivity and structural investigation of tetrahydroneoprzewaquinone A as an anti-inflammatory agent: An experimental and molecular modeling perspective. Polycyclic Aromatic Compounds, 1–25. https://doi.org/10.1080/10406638.2023.2257842
  • Elkaeed, E. B., Yousef, R. G., Elkady, H., Gobaara, I. M. M., Alsfouk, B. A., Husein, D. Z., Ibrahim, I. M., Metwaly, A. M., & Eissa, I. H. (2022). Design, synthesis, docking, DFT, MD simulation studies of a new nicotinamide-based derivative: In vitro anticancer and VEGFR-2 inhibitory effects. Molecules, 27(14), 4606. https://doi.org/10.3390/molecules27144606
  • European Antimicrobial Resistance Collaborators. (2022). The burden of bacterial antimicrobial resistance in the WHO European region in 2019: A cross-country systematic analysis. The Lancet. Public Health, 7(11), e897–e913. https://doi.org/10.1016/S2468-2667(22)00225-0/ATTACHMENT/ED855865-6142-412C-99DE-1BEA2ACB3168/MMC3.PDF
  • Fabre, V., Cosgrove, S. E., Secaira, C., Torrez, J. C. T., Lessa, F. C., Patel, T. S., & Quiros, R. (2022). Antimicrobial stewardship in Latin America: Past, present, and future. Antimicrobial Stewardship & Healthcare Epidemiology: ASHE, 2(1), e68. https://doi.org/10.1017/ASH.2022.47
  • Ferreira, O. O., Mali, S. N., Jadhav, B., Chtita, S., Kuznetsov, A., Bhandare, R. R., Shaik, A. B., Siddique, F., Yadav, A. R., Lai, C. H., Cruz, J. N., De Aguiar Andrade, E. H., Arvindekar, S., Jawarkar, R. D., & De Oliveira, M. S. (2023). Synthesis, in-silico, in vitro and DFT assessments of substituted imidazopyridine derivatives as potential antimalarials targeting hemoglobin degradation pathway. Journal of Computational Biophysics and Chemistry, 22(07), 795–814. https://doi.org/10.1142/S2737416523500412
  • Ferri, M., Ranucci, E., Romagnoli, P., & Giaccone, V. (2017). Antimicrobial resistance: A global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, 57(13), 2857–2876. https://doi.org/10.1080/10408398.2015.1077192
  • Fleming, A. (1929). On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. British Journal of Experimental Pathology, 10(3), 226. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2048009/
  • Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
  • Gaikwad, R., Rathod, S., & Shinde, A. (2022). In-silico study of phytoconstituents from Tribulus terrestris as potential anti-psoriatic agent. Asian Journal of Pharmaceutical Research, 12(4), 267–274. https://doi.org/10.52711/2231-5691.2022.00043
  • Gallagher, J. C. (2019). Omadacycline: A modernized tetracycline. Clinical Infectious Diseases, 69(Suppl 1), S1–S5. https://doi.org/10.1093/cid/ciz394
  • Hayashi, K., Nakashima, R., Sakurai, K., Kitagawa, K., Yamasaki, S., Nishino, K., & Yamaguchi, A. (2016). AcrB-AcrA fusion proteins that act as multidrug efflux transporters. Journal of Bacteriology, 198(2), 332–342. https://doi.org/10.1128/JB.00587-15/SUPPL_FILE/ZJB999093883SO1.PDF
  • Henriques Normark, B., & Normark, S. (2002). Evolution and spread of antibiotic resistance. Journal of Internal Medicine, 252(2), 91–106. https://doi.org/10.1046/j.1365-2796.2002.01026.x
  • Hutchings, M., Truman, A., & Wilkinson, B. (2019). Antibiotics: Past, present and future. Current Opinion in Microbiology, 51, 72–80. https://doi.org/10.1016/j.mib.2019.10.008
  • Jang, S. (2023). AcrAB − TolC, a major efflux pump in Gram negative bacteria: Toward understanding its operation mechanism. BMB Reports, 56(6), 326–334. https://doi.org/10.5483/BMBRep.2023-0070
  • Jeelani, A., Muthu, S., & Narayana, B. (2021). Molecular structure determination, Bioactivity score, Spectroscopic and Quantum computational studies on (E)-N’-(4-Chlorobenzylidene)-2-(napthalen-2-yloxy) acetohydrazide. Journal of Molecular Structure, 1241, 130558. https://doi.org/10.1016/j.molstruc.2021.130558
  • Kausar, T., & Nayeem, S. M. (2018). Identification of small molecule inhibitors of ALK2: A virtual screening, density functional theory, and molecular dynamics simulations study. Journal of Molecular Modeling, 24(9), 262. https://doi.org/10.1007/s00894-018-3789-2
  • Kebarle, P., & Chowdhury, S. (1987). Electron affinities and electron-transfer reactions. Chemical Reviews, 87(3), 513–534. https://doi.org/10.1021/cr00079a003
  • Kilbile, J. T., Tamboli, Y., Ansari, S. A., Rathod, S. S., Choudhari, P. B., Alkahtani, H., & Sapkal, S. B. (2023). Synthesis, biological evaluation, and computational studies of 6-fluoro-3-(piperidin-4-yl)-1,2-benzisoxazole sulfonamide conjugates. Polycyclic Aromatic Compounds, 1–21. https://doi.org/10.1080/10406638.2023.2247117
  • Kobylka, J., Kuth, M. S., Müller, R. T., Geertsma, E. R., & Pos, K. M. (2020). AcrB: A mean, keen, drug efflux machine. Annals of the New York Academy of Sciences, 1459(1), 38–68. https://doi.org/10.1111/NYAS.14239
  • Krishnamoorthy, G., Tikhonova, E. B., & Zgurskaya, H. I. (2008). Fitting periplasmic membrane fusion proteins to inner membrane transporters: Mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB. Journal of Bacteriology, 190(2), 691–698. https://doi.org/10.1128/JB.01276-07
  • Kumar, B. S., Anuragh, S., Kammala, A. K., & Ilango, K. (2022). Computer aided drug design approach to screen phytoconstituents of Adhatoda vasica as potential inhibitors of SARS-CoV-2 main protease enzyme. Life, 12(2), 315. https://doi.org/10.3390/life12020315
  • Levy, S. B., & Bonnie, M. (2004). Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine, 10(12 Suppl), S122–S129. https://doi.org/10.1038/nm1145
  • Li, X. Z., & Nikaido, H. (2004). Efflux-mediated drug resistance in bacteria. Drugs, 64(2), 159–204. https://doi.org/10.2165/00003495-200464020-00004
  • Lin, J., Nishino, K., Roberts, M. C., Tolmasky, M., Aminov, R. I., & Zhang, L. (2015). Mechanisms of antibiotic resistance. Frontiers in Microbiology, 6(FEB), 34. https://doi.org/10.3389/fmicb.2015.00034
  • Livermore, D. M. (2011). Discovery research: The scientific challenge of finding new antibiotics. The Journal of Antimicrobial Chemotherapy, 66(9), 1941–1944. https://doi.org/10.1093/jac/dkr262
  • Manesh, A., & Varghese, G. M. (2021). Rising antimicrobial resistance: An evolving epidemic in a pandemic. The Lancet Microbe, 2(9), e419–e420. https://doi.org/10.1016/s2666-5247(21)00173-7
  • Mehta, J., Rolta, R., & Dev, K. (2022). Role of medicinal plants from North Western Himalayas as an efflux pump inhibitor against MDR AcrAB-TolC Salmonella enterica serovar typhimurium: In vitro and In silico studies. Journal of Ethnopharmacology, 282, 114589. https://doi.org/10.1016/j.jep.2021.114589
  • Mehta, J., Rolta, R., Salaria, D., Awofisayo, O., Fadare, O. A., Sharma, P. P., Rathi, B., Chopra, A., Kaushik, N., Choi, E. H., & Kaushik, N. K. (2021). Phytocompounds from Himalayan medicinal plants as potential drugs to treat multidrug-resistant salmonella typhimurium: An in silico approach. Biomedicines, 9(10), 1402. https://doi.org/10.3390/biomedicines9101402
  • Mehta, J., Utkarsh, K., Fuloria, S., Singh, T., Sekar, M., Salaria, D., Rolta, R., Begum, M. Y., Gan, S. H., Rani, N. N. I. M., Chidambaram, K., Subramaniyan, V., Sathasivam, K. V., Lum, P. T., Uthirapathy, S., Fadare, O. A., Awofisayo, O., & Fuloria, N. K. (2022). Antibacterial potential of Bacopa monnieri (L.) Wettst. and its bioactive molecules against uropathogens—An in silico study to identify potential lead molecule(s) for the development of new drugs to treat urinary tract infections. Molecules, 27(15), 4971. https://doi.org/10.3390/molecules27154971
  • Miar, M., Shiroudi, A., Pourshamsian, K., Oliaey, A. R., & Hatamjafari, F. (2021). Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and substituent effects. Journal of Chemical Research, 45(1-2), 147–158. https://doi.org/10.1177/1747519820932091
  • Miethke, M., Pieroni, M., Weber, T., Brönstrup, M., Hammann, P., Halby, L., Arimondo, P. B., Glaser, P., Aigle, B., Bode, H. B., Moreira, R., Li, Y., Luzhetskyy, A., Medema, M. H., Pernodet, J.-L., Stadler, M., Tormo, J. R., Genilloud, O., Truman, A. W., … Müller, R. (2021). Towards the sustainable discovery and development of new antibiotics. Nature Reviews. Chemistry, 5(10), 726–749. https://doi.org/10.1038/s41570-021-00313-1
  • Müller, R. T., & Pos, K. M. (2015). The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump. Biological Chemistry, 396(9-10), 1083–1089. https://doi.org/10.1515/HSZ-2015-0150/MACHINEREADABLECITATION/RIS
  • Murakami, S. (2008). Multidrug efflux transporter, AcrB—The pumping mechanism. Current Opinion in Structural Biology, 18(4), 459–465. https://doi.org/10.1016/J.SBI.2008.06.007
  • Murakami, S., Nakashima, R., Yamashita, E., & Yamaguchi, A. (2002). Crystal structure of bacterial multidrug efflux transporter AcrB. Nature, 419(6907), 587–593. https://doi.org/10.1038/nature01050
  • Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
  • Neese, F. (2012). The ORCA program system. WIREs Computational Molecular Science, 2(1), 73–78. https://doi.org/10.1002/wcms.81
  • Nelson, M. L., & Levy, S. B. (2011). The history of the tetracyclines. Annals of the New York Academy of Sciences, 1241(1), 17–32. https://doi.org/10.1111/j.1749-6632.2011.06354.x
  • Nikaido, H. (1998). Antibiotic resistance caused by Gram-negative multidrug efflux pumps. Clinical Infectious Diseases, 27(s1), S32–S41. https://doi.org/10.1086/514920
  • Nikaido, H., & Takatsuka, Y. (2009). Mechanisms of RND multidrug efflux pumps. Biochimica et Biophysica Acta, 1794(5), 769–781. https://doi.org/10.1016/J.BBAPAP.2008.10.004
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3(33), 33. https://doi.org/10.1186/1758-2946-3-33
  • Panchal, R., Bapat, S., Mukherjee, S., & Chowdhary, A. (2021). In silico binding analysis of lutein and rosmarinic acid against envelope domain III protein of dengue virus. Indian Journal of Pharmacology, 53(6), 471–479. https://doi.org/10.4103/ijp.IJP_576_19
  • Patial, P. K., & Cannoo, D. S. (2021). Phytochemical profile, antioxidant potential and DFT study of Araucaria columnaris (G. Forst.) Hook. Branch extracts. Natural Product Research, 35(22), 4611–4615. https://doi.org/10.1080/14786419.2019.1696330
  • Pires, D. E. V., Blundell, T. L., Ascher, D. B., & 1ga, U. K. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Podolsky, S. H. (2018). The evolving response to antibiotic resistance (1945–2018). Palgrave Communications, 4(1), 124. https://doi.org/10.1057/s41599-018-0181-x
  • Pos, K. M. (2009). Drug transport mechanism of the AcrB efflux pump. Biochimica et Biophysica Acta, 1794(5), 782–793. https://doi.org/10.1016/j.bbapap.2008.12.015
  • Puthanveedu, V., & Muraleedharan, K. (2022). Phytochemicals as potential inhibitors for COVID-19 revealed by molecular docking, molecular dynamic simulation and DFT studies. Structural Chemistry, 33(5), 1423–1443. https://doi.org/10.1007/s11224-022-01982-4
  • Rathod, S., Bhande, D., Pawar, S., Gumphalwad, K., Choudhari, P., & More, H. (2023). Identification of potential hits against fungal lysine deacetylase Rpd3 via molecular docking, molecular dynamics simulation, DFT, in-silico ADMET and drug-likeness assessment. Chemistry Africa. https://doi.org/10.1007/s42250-023-00766-5
  • Rathod, S., Chavan, P., Mahuli, D., Rochlani, S., Shinde, S., Pawar, S., Choudhari, P., Dhavale, R., Mudalkar, P., & Tamboli, F. (2023). Exploring biogenic chalcones as DprE1 inhibitors for antitubercular activity via in silico approach. Journal of Molecular Modeling, 29(4), 113. https://doi.org/10.1007/S00894-023-05521-8
  • Rathod, S., Dey, S., Pawar, S., Dhavale, R., Choudhari, P., Rajakumara, E., Mahuli, D., Bhagwat, D., Tamboli, Y., Sankpal, P., Mali, S., & More, H. (2023). Identification of potential biogenic chalcones against antibiotic resistant efflux pump (AcrB) via computational study. Journal of Biomolecular Structure & Dynamics, 1–19. https://doi.org/10.1080/07391102.2023.2225099
  • Rathod, S., Shinde, K., Porlekar, J., Choudhari, P., Dhavale, R., Mahuli, D., Tamboli, Y., Bhatia, M., Haval, K. P., Al-Sehemi, A. G., & Pannipara, M. (2022). Computational exploration of anti-cancer potential of flavonoids against cyclin-dependent kinase 8: An in silico molecular docking and dynamic approach. ACS Omega, 8(1), 391–409. https://doi.org/10.1021/acsomega.2c04837
  • Rochlani, S., Bhatia, M., Rathod, S., Choudhari, P., & Dhavale, R. (2023). Exploration of limonoids for their broad spectrum antiviral potential via DFT, molecular docking and molecular dynamics simulation approach. Natural Product Research, 1–6. https://doi.org/10.1080/14786419.2023.2202398
  • Rolta, R., Goyal, M., Sharma, S., Bharaj, D., Salaria, D., Upadhyay, N. K., Lal, U. R., Dev, K., & Sourirajan, A. (2022). Bioassay guided fractionation of phytocompounds from Bergenia ligulata: A synergistic approach to treat drug resistant bacterial and fungal pathogens. Pharmacological Research - Modern Chinese Medicine, 3, 100076. https://doi.org/10.1016/j.prmcm.2022.100076
  • Rolta, R., Salaria, D., Kumar, V., Patel, C. N., Sourirajan, A., Baumler, D. J., & Dev, K. (2022). Molecular docking studies of phytocompounds of Rheum emodi Wall with proteins responsible for antibiotic resistance in bacterial and fungal pathogens: In silico approach to enhance the bio-availability of antibiotics. Journal of Biomolecular Structure & Dynamics, 40(8), 3789–3803. https://doi.org/10.1080/07391102.2020.1850364
  • Salaria, D., Rolta, R., Patel, C. N., Dev, K., Sourirajan, A., & Kumar, V. (2022). In vitro and in silico analysis of Thymus serpyllum essential oil as bioactivity enhancer of antibacterial and antifungal agents. Journal of Biomolecular Structure & Dynamics, 40(20), 10383–10402. https://doi.org/10.1080/07391102.2021.1943530
  • Shi, X., Chen, M., Yu, Z., Bell, J. M., Wang, H., Forrester, I., Villarreal, H., Jakana, J., Du, D., Luisi, B. F., Ludtke, S. J., & Wang, Z. (2019). In situ structure and assembly of the multidrug efflux pump AcrAB-TolC. Nature Communications, 10(1), 2635. https://doi.org/10.1038/s41467-019-10512-6
  • Shivanika, C., Deepak Kumar, S., Ragunathan, V., Tiwari, P., Sumitha, A., & Brindha Devi, P. (2022). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure & Dynamics, 40(2), 585–611. https://doi.org/10.1080/07391102.2020.1815584
  • Snyder, H. D., & Kucukkal, T. G. (2021). Computational chemistry activities with Avogadro and ORCA. Journal of Chemical Education, 98(4), 1335–1341. https://doi.org/10.1021/acs.jchemed.0c00959
  • Sun, J., Deng, Z., & Yan, A. (2014). Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications, 453(2), 254–267. https://doi.org/10.1016/J.BBRC.2014.05.090
  • Swami, P., Rathod, S., Choudhari, P., Patil, D., Patravale, A., Nalwar, Y., Sankpal, S., & Hangirgekar, S. (2023). Fe3O4@SiO2@TDI@DES: A novel magnetically separable catalyst for the synthesis of oxindoles. Journal of Molecular Structure, 1292, 136079. https://doi.org/10.1016/j.molstruc.2023.136079
  • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., Theuretzbacher, U., & Magrini, N. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet. Infectious Diseases, 18(3), 318–327. https://doi.org/10.1016/S1473-3099(17)30753-3
  • Takatsuka, Y., & Nikaido, H. (2006). Threonine-978 in the transmembrane segment of the multidrug efflux pump AcrB of Escherichia coli is crucial for drug transport as a probable component of the proton relay network. Journal of Bacteriology, 188(20), 7284–7289. https://doi.org/10.1128/JB.00683-06
  • Tam, H. K., Foong, W. E., Oswald, C., Herrmann, A., Zeng, H., & Pos, K. M. (2021). Allosteric drug transport mechanism of multidrug transporter AcrB. Nature Communications, 12(1), 3889. https://doi.org/10.1038/s41467-021-24151-3
  • Thangavel, M., Chandramohan, V., Shankaraiah, L. H., Jayaraj, R. L., Poomani, K., Magudeeswaran, S., Govindasamy, H., Vijayakumar, R., Rangasamy, B., Dharmar, M., & Namasivayam, E. (2020). Design and molecular dynamic investigations of 7,8-dihydroxyflavone derivatives as potential neuroprotective agents against alpha-synuclein. Scientific Reports, 10(1), 599. https://doi.org/10.1038/s41598-020-57417-9
  • Tsukazaki, T., Mori, H., Echizen, Y., Ishitani, R., Fukai, S., Tanaka, T., Perederina, A., Vassylyev, D. G., Kohno, T., Maturana, A. D., Ito, K., & Nureki, O. (2011). Structure and function of a membrane component SecDF that enhances protein export. Nature, 474(7350), 235–238. https://doi.org/10.1038/nature09980
  • Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. R. M., Mitra, S., Emran, T. B., Dhama, K., Ripon, M. K. H., Gajdács, M., Sahibzada, M. U. K., Hossain, M. J., & Koirala, N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health, 14(12), 1750–1766. https://doi.org/10.1016/j.jiph.2021.10.020
  • Wang, Z., Fan, G., Hryc, C. F., Blaza, J. N., Serysheva, I. I., Schmid, M. F., Chiu, W., Luisi, B. F., & Du, D. (2017). An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. eLife, 6, e24905. https://doi.org/10.7554/eLife.24905.001
  • Zwama, M., & Yamaguchi, A. (2018). Molecular mechanisms of AcrB-mediated multidrug export. Research in Microbiology, 169(7-8), 372–383. https://doi.org/10.1016/J.RESMIC.2018.05.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.