93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Developing of SARS-CoV-2 fusion protein expressed in E. coli Shuffle T7 for enhanced ELISA detection sensitivity – an integrated experimental and bioinformatic approach

, &
Received 24 Jul 2023, Accepted 03 Jan 2024, Published online: 17 Jan 2024

References

  • Burbelo, P. D., Riedo, F. X., Morishima, C., Rawlings, S., Smith, D., Das, S., Strich, J. R., Chertow, D. S., Davey, R. T., & Cohen, J. I. (2020). Sensitivity in detection of antibodies to nucleocapsid and spike proteins of severe acute respiratory syndrome coronavirus 2 in patients with coronavirus disease 2019. The Journal of Infectious Diseases, 222(2), 206–213. https://doi.org/10.1093/infdis/jiaa273
  • Chadeau-Hyam, M., Wang, H., Eales, O., Haw, D., Bodinier, B., Whitaker, M., Walters, C. E., Ainslie, K. E. C., Atchison, C., Fronterre, C., Diggle, P. J., Page, A. J., Trotter, A. J., Ashby, D., Barclay, W., Taylor, G., Cooke, G., Ward, H., Darzi, A., … Elliott, P. (2022). SARS-CoV-2 infection and vaccine effectiveness in England (REACT-1): A series of cross-sectional random community surveys. The Lancet. Respiratory Medicine, 10(4), 355–366. https://doi.org/10.1016/S2213-2600(21)00542-7
  • Chen, J., Miao, L., Li, J.-M., Li, Y.-Y., Zhu, Q.-Y., Zhou, C.-L., Fang, H.-Q., & Chen, H.-P. (2005). Receptor-binding domain of SARS-CoV spike protein: Soluble expression in E. coli, purification and functional characterization. World Journal of Gastroenterology, 11(39), 6159–6164. https://doi.org/10.3748/wjg.v11.i39.6159
  • Chen, X., Zaro, J. L., & Shen, W. C. (2013, October 15). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369.https://doi.org/10.1016/j.addr.2012.09.039
  • Chen, Z., Pei, D., Jiang, L., Song, Y., Wang, J., Wang, H., Zhou, D., Zhai, J., Du, Z., Li, B., Qiu, M., Han, Y., Guo, Z., & Yang, R. (2004). Antigenicity analysis of different regions of the severe acute respiratory syndrome coronavirus nucleocapsid protein. Clinical Chemistry, 50(6), 988–995. https://doi.org/10.1373/clinchem.2004.031096
  • Das, N. C., Gupta, P. S., Panda, S. K., Rana, M. K., & Mukherjee, S. (2023, February 1). Reverse vaccinology assisted design of a novel multi-epitope vaccine to target Wuchereria bancrofti cystatin: An immunoinformatics approach. International Immunopharmacology, 115, 109639. https://doi.org/10.1016/j.intimp.2022.109639
  • Das, N. C., Labala, R. K., Patra, R., Chattoraj, A., & Mukherjee, S. (2022, March 1). In silico identification of new anti-SARS-CoV-2 agents from bioactive phytocompounds targeting the viral spike glycoprotein and human TLR4. Letters in Drug Design & Discovery, 19(3), 175–191. https://doi.org/10.2174/1570180818666210901125519
  • Das, N. C., Ray, A. S., Bayry, J., & Mukherjeee, S. (2021, April 17). Therapeutic efficacy of anti-bestrophin antibodies against experimental filariasis: Immunological, immune-informatics and immune simulation investigations. Antibodies, 10(2), 14. https://doi.org/10.3390/antib10020014
  • Dutta, N. K., Mazumdar, K., & Gordy, J. T. (2020). The nucleocapsid protein of SARS–CoV-2: A target for vaccine development. Journal of Virology, 94(13), e00647-20. https://doi.org/10.1128/JVI.00647-20
  • Dutta, N. K., Mazumdar, K., Lee, B.-H., Baek, M.-W., Kim, D.-J., Na, Y.-R., Park, S.-H., Lee, H.-K., Kariwa, H., Mai, L. Q., & Park, J.-H. (2008). Search for potential target site of nucleocapsid gene for the design of an epitope-based SARS DNA vaccine. Immunology Letters, 118(1), 65–71. https://doi.org/10.1016/j.imlet.2008.03.003
  • Fotouhi, F., Salehi-Vaziri, M., Farahmand, B., Mostafavi, E., Pouriayevali, M. H., Jalali, T., Mazaheri, V., Sadat Larijani, M., Tavakoli, M., Eshratkhah Mohammadnejad, A., Afzali, N., Zokaei, A., Hosseini, S., Mortazavipour, M. M., Oskouei, F., & Ramezani, A. (2021, May 1). Prolonged viral shedding and antibody persistence in patients with COVID-19. Microbes and Infection, 23(4–5), 104810. https://doi.org/10.1016/j.micinf.2021.104810
  • Garcia-Beltran, W. F., Lam, E. C., Astudillo, M. G., Yang, D., Miller, T. E., Feldman, J., Hauser, B. M., Caradonna, T. M., Clayton, K. L., Nitido, A. D., Murali, M. R., Alter, G., Charles, R. C., Dighe, A., Branda, J. A., Lennerz, J. K., Lingwood, D., Schmidt, A. G., Iafrate, A. J., & Balazs, A. B. (2021). COVID-19-neutralizing antibodies predict disease severity and survival. Cell, 184(2), 476–488.e11. https://doi.org/10.1016/j.cell.2020.12.015
  • Gorai, S., Das, N. C., Gupta, P. S., Panda, S. K., Rana, M. K., & Mukherjee, S. (2022, March 1). Designing efficient multi-epitope peptide-based vaccine by targeting the antioxidant thioredoxin of bancroftian filarial parasite. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 98, 105237. https://doi.org/10.1016/j.meegid.2022.105237
  • Grishin, A. M., Dolgova, N. V., Landreth, S., Fisette, O., Pickering, I. J., George, G. N., Falzarano, D., & Cygler, M. (2022, January 30). Disulfide bonds play a critical role in the structure and function of the receptor-binding domain of the SARS-CoV-2 spike antigen. Journal of Molecular Biology, 434(2), 167357.https://doi.org/10.1016/j.jmb.2021.167357
  • He, Y., Qi, J., Xiao, L., Shen, L., Yu, W., & Hu, T. (2021). Purification and characterization of the receptor‐binding domain of SARS‐CoV‐2 spike protein from Escherichia coli. Engineering in Life Sciences, 21(6), 453–460. https://doi.org/10.1002/elsc.202000106
  • Jones, B. E., Brown-Augsburger, P. L., Corbett, K. S., Westendorf, K., Davies, J., Cujec, T. P., Wiethoff, C. M., Blackbourne, J. L., Heinz, B. A., Foster, D., & Higgs, R. E. (2021). The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Science Translational Medicine, 13(593):eabf1906. https://doi.org/10.1126/scitranslmed.abf1906
  • Kahn, J. S., & McIntosh, K. (2005). History and recent advances in coronavirus discovery. The Pediatric Infectious Disease Journal, 24(11 Suppl), S223–S227. https://doi.org/10.1097/01.inf.0000188166.17324.60
  • Kang, S., Yang, M., Hong, Z., Zhang, L., Huang, Z., Chen, X., He, S., Zhou, Z., Zhou, Z., Chen, Q., Yan, Y., Zhang, C., Shan, H., & Chen, S. (2020). Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharmaceutica Sinica. B, 10(7), 1228–1238. https://doi.org/10.1016/j.apsb.2020.04.009
  • Kemp, S. A., Collier, D. A., Datir, R. P., Ferreira, I. A. T. M., Gayed, S., Jahun, A., Hosmillo, M., Rees-Spear, C., Mlcochova, P., Lumb, I. U., Roberts, D. J., Chandra, A., Temperton, N., Sharrocks, K., Blane, E., Modis, Y., Leigh, K. E., Briggs, J. A. G., van Gils, M. J., … Gupta, R. K. (2021). SARS-CoV-2 evolution during treatment of chronic infection. Nature, 592(7853), 277–282. https://doi.org/10.1038/s41586-021-03291-y
  • Leung, D. T. M., Tam, F. C. H., Ma, C. H., Chan, P. K. S., Cheung, J. L. K., Niu, H., Tam, J. S. L., & Lim, P. L. (2004). Antibody response of patients with severe acute respiratory syndrome (SARS) targets the viral nucleocapsid. The Journal of Infectious Diseases, 190(2), 379–386. https://doi.org/10.1086/422040
  • Liu, G., Hu, S., Hu, Y., Chen, P., Yin, J., Wen, J., Wang, J., Lin, L., Liu, J., You, B., Yin, Y., Li, S., Wang, H., Ren, Y., Ji, J., Zhao, X., Sun, Y., Zhang, X., Fang, J., … Yang, H. (2003). The C-terminal portion of the nucleocapsid protein demonstrates SARS-CoV antigenicity. Genomics, Proteomics & Bioinformatics, 1(3), 193–197. https://doi.org/10.1016/S1672-0229(03)01024-6
  • Lobstein, J., Emrich, C. A., Jeans, C., Faulkner, M., Riggs, P., & Berkmen, M. (2012, December). Shuffle T7, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microbial Cell Factories, 11(1), 56. https://doi.org/10.1186/1475-2859-11-56
  • Malik, Y. S., Kumar, P., Ansari, M. I., Hemida, M. G., El Zowalaty, M. E., Abdel-Moneim, A. S., Ganesh, B., Salajegheh, S., Natesan, S., Sircar, S., Safdar, M., Vinodhkumar, O. R., Duarte, P. M., Patel, S. K., Klein, J., Rahimi, P., & Dhama, K. (2021). SARS-CoV-2 spike protein extrapolation for COVID diagnosis and vaccine development. Frontiers in Molecular Biosciences, 8, 607886. https://doi.org/10.3389/fmolb.2021.607886
  • McBride, R., Van Zyl, M., & Fielding, B. C. (2014). The coronavirus nucleocapsid is a multifunctional protein. Viruses, 6(8), 2991–3018. https://doi.org/10.3390/v6082991
  • McMahan, K., Yu, J., Mercado, N. B., Loos, C., Tostanoski, L. H., Chandrashekar, A., Liu, J., Peter, L., Atyeo, C., Zhu, A., Bondzie, E. A., Dagotto, G., Gebre, M. S., Jacob-Dolan, C., Li, Z., Nampanya, F., Patel, S., Pessaint, L., Van Ry, A., … Barouch, D. H. (2021). Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature, 590(7847), 630–634. https://doi.org/10.1038/s41586-020-03041-6
  • Murae, M., Shimizu, Y., Yamamoto, Y., Kobayashi, A., Houri, M., Inoue, T., Irie, T., Gemba, R., Kondo, Y., Nakano, Y., Miyazaki, S., Yamada, D., Saitoh, A., Ishii, I., Onodera, T., Takahashi, Y., Wakita, T., Fukasawa, M., & Noguchi, K. (2022, March 15). The function of SARS-CoV-2 spike protein is impaired by disulfide-bond disruption with mutation at cysteine-488 and by thiol-reactive N-acetyl-cysteine and glutathione. Biochemical and Biophysical Research Communications, 597, 30–36.https://doi.org/10.1016/j.bbrc.2022.01.106
  • Okada, M., Takemoto, Y., Okuno, Y., Hashimoto, S., Yoshida, S., Fukunaga, Y., Tanaka, T., Kita, Y., Kuwayama, S., Muraki, Y., Kanamaru, N., Takai, H., Okada, C., Sakaguchi, Y., Furukawa, I., Yamada, K., Matsumoto, M., Kase, T., Demello, D. E., … Sakatani, M. (2005). The development of vaccines against SARS corona virus in mice and SCID-PBL/hu mice. Vaccine, 23(17–18), 2269–2272. https://doi.org/10.1016/j.vaccine.2005.01.036
  • Osterman, A., Badell, I., Basara, E., Stern, M., Kriesel, F., Eletreby, M., Öztan, G. N., Huber, M., Autenrieth, H., Knabe, R., Späth, P. M., Muenchhoff, M., Graf, A., Krebs, S., Blum, H., Durner, J., Czibere, L., Dächert, C., Kaderali, L., Baldauf, H.-M., & Keppler, O. T. (2022). Impaired detection of omicron by SARS-CoV-2 rapid antigen tests. Medical Microbiology and Immunology, 211(2–3), 105–117. https://doi.org/10.1007/s00430-022-00730-z
  • Ou, J., Lan, W., Wu, X., Zhao, T., Duan, B., Yang, P., Ren, Y., Quan, L., Zhao, W., Seto, D., Chodosh, J., Luo, Z., Wu, J., & Zhang, Q. (2022). Tracking SARS-CoV-2 Omicron diverse spike gene mutations identifies multiple inter-variant recombination events. Signal Transduction and Targeted Therapy, 7(1), 138. https://doi.org/10.1038/s41392-022-00992-2
  • Patra, R., Das, N. C., & Mukherjee, S. (2022, February 7). Toll-like receptors (TLRs) as therapeutic targets for treating SARS-CoV-2: An immunobiological perspective. In Coronavirus therapeutics–volume I: Basic science and therapy development (pp. 87–109). Springer International Publishing. https://doi.org/10.1007/978-3-030-85109-5_6
  • Pedebos, C., & Khalid, S. (2022, April). Simulations of the spike: Molecular dynamics and SARS-CoV-2. Nature Reviews Microbiology, 20(4), 192–192. https://doi.org/10.1038/s41579-022-00699-9
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010, April 16). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PloS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Reddy Chichili, V. P., Kumar, V., & Sivaraman, J. (2013, February). Linkers in the structural biology of protein–protein interactions. Protein Science: A Publication of the Protein Society, 22(2), 153–167.https://doi.org/10.1002/pro.2206
  • Sabourin, M., Tuzon, C. T., Fisher, T. S., & Zakian, V. A. (2007, January). A flexible protein linker improves the function of epitope‐tagged proteins in Saccharomyces cerevisiae. Yeast (Chichester, England), 24(1), 39–45.https://doi.org/10.1002/yea.1431
  • Shamriz, S., Ofoghi, H., & Moazami, N. (2016, September 1). Effect of linker length and residues on the structure and stability of a fusion protein with malaria vaccine application. Computers in Biology and Medicine, 76, 24–29.https://doi.org/10.1016/j.compbiomed.2016.06.015
  • Shi, R., Shan, C., Duan, X., Chen, Z., Liu, P., Song, J., Song, T., Bi, X., Han, C., Wu, L., Gao, G., Hu, X., Zhang, Y., Tong, Z., Huang, W., Liu, W. J., Wu, G., Zhang, B., Wang, L., … Yan, J. (2020). A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature, 584(7819), 120–124. https://doi.org/10.1038/s41586-020-2381-y
  • Wongnak, R., Brindha, S., Yoshizue, T., Onchaiya, S., Mizutani, K., & Kuroda, Y. (2023). E. coli production of a multi-disulfide bonded SARS-CoV-2 Omicron BA.5 RBD exhibiting native-like biochemical and biophysical properties. Biophysics and Physicobiology, 20(4), e200036. https://doi.org/10.2142/biophysico.bppb-v20.0036

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.