112
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An investigation into the usage of black cumin derivatives against cancer and COVID-19 as the nature medicine

ORCID Icon
Received 03 Oct 2023, Accepted 02 Jan 2024, Published online: 10 Jan 2024

References

  • Abd El-Hakim, Y.M., Al-Sagheer, A.A., Khafaga, A.F., Batiha, G.E., Arif, M., Abd El-Hack, M.E. (2021). Nigella sativa Supplementation in Ruminant Diets: Production, Health, and Environmental Perspectives. In Fawzy Ramadan, M. (Ed.), Black cumin (Nigella sativa) seeds: Chemistry, Technology, Functionality, and Applications. Food Bioactive Ingredients. Cham: Springer. https://doi.org/10.1007/978-3-030-48798-0_17
  • Abo-Atya, D. M., El-Mallah, M. F., El-Seedi, H. R., & Farag, M. A. (2021). Novel prospective of N. sativa essential oil analysis, culinary and medicinal uses. In M. Fawzy Ramadan (Ed.) Black cumin (Nigella sativa) seeds: Chemistry, technology, functionality, and applications. Food bioactive ingredients. Springer. https://doi.org/10.1007/978-3-030-48798-0_9/.
  • Abo-Atya, D. M., El-Mallah, M. F., El-Seedi, H. R., & Mohamed, A. F. (2021). Novel prospective of N. sativa essential oil analysis, culinary and medicinal uses. Springer Nature. https://doi.org/10.1007/978-3-030-48798-0_9
  • Aboul-Ela, E. I. (2002). Cytogenetic studies on Nigella sativa seeds extract and thymoquinone on mouse cells infected with schistosomiasis using karyotyping. Mutation Research, 516(1–2), 11–17. https://doi.org/10.1016/s1383-5718(01)00333-3
  • Ahmed, W. A., Hassan, S. A., Galeb, F. M., El-Taweel, M. A., & Abu-Bedair, F. A. (2008). The in vitro promising therapeutic activity of thymoquinone on hepatocellular carcinoma (HepG2) cell line. Global Veterinaria, 2(5), 233–241.
  • Akhtar, M. S., & Riffat, S. (1991). Field trial of Saussurea lappa roots against nematodes and Nigella sativa seeds against cestodes in children. Journal of Pakistan Medical Association, 41, 185–187.
  • Alagawan, M., Shabaan, S. E., Mayada, R. F., Abd El-Hack, M. E., Asmaa, F. K., Khan, S., Gopi, M., & Kuldeep, D. (2021). Health-promoting activities of Nigella sativa essential oil. In M. Fawzy Ramadan (Ed.), Black cumin (Nigella sativa) seeds: Chemistry, Technology, Functionality, and Applications. Food Bioactive Ingredients. Springer. https://doi.org/10.1007/978-3-030-48798-0_29/.
  • Alagie, J., Zuha, I., Sheriffo, J., Mufeed, I., & Saiema, R. (2022). Chapter 16—Antiviral effects of black seeds: Effect on COVID-19. In Andleeb Khan, Muneeb Rehman, Black Seeds (Nigella sativa) (pp. 387–404). Elsevier. https://doi.org/10.1016/B978-0-12-824462-3.00004-4
  • Al-Bukhari, M. I. (1976). Division (71) on medicine. In Sahi Al-Bukhari, the collection of authentic sayings of Prophet Mohammad (peacebe upon him) (2nd ed.). Hilal Publications.
  • Alhmied, F., Alammar, A., Alsultan, B., Alshehri, M., & Pottoo, F. H. (2021). Molecular mechanisms of thymoquinone as anticancer agent. Combinatorial Chemistry & High Throughput Screening, 24(10), 1644–1653. https://doi.org/10.2174/1386207323999201027225305
  • Al-Jishi, S. A. A. (2000). A study of Nigella sativa on blood hemostatic functions. [M.Sc. Thesis]. King Faisal University, Dammam, Saudi Arabia.
  • Allam, A. E., Amen, Y., Ashour, A., Assaf, H. K., Hassan, H. A., Abdel-Rahman, I. M., Sayed, A. M., & Shimizu, K. (2021). In silico study of natural compounds from sesame against COVID-19 by targeting Mpro, PLpro and RdRp RSC Adv. RSC Advances, 11(36), 22398–22408. https://doi.org/10.1039/d1ra03937g
  • Amr, E. E. (2021). Thymoquinone: Chemistry and functionality. Springer Nature. https://doi.org/10.1007/978-3-030-48798-0_8/.
  • Attoub, S., Sperandio, O., Raza, H., Arafat, K., Al-Salam, S., Al Sultan, M. A., Al Safi, M., Takahashi, T., & Adem, A. (2013). Thymoquinone as an anticancer agent: Evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundamental & Clinical Pharmacology, 27(5), 557–569. https://doi.org/10.1111/j.1472-8206.2012.01056.x
  • Badary, O. A., Al-Shabanah, O. A., Nagi, M. N., Al-Rikabi, A. C., & Elmazar, M. M. (1999). Inhibition of benzo(a)pyrene-induced forestomach carcinogenesis in mice by thymoquinone. European Journal of Cancer Prevention: The Official Journal of the European Cancer Prevention Organisation (ECP), 8(5), 435–440. https://doi.org/10.1097/00008469-199910000-00009
  • Badary, O. A., & Gamal El-Din, A. M. (2001). Inhibitory effect of thymoquinone against 20-methyl-chlolanthrene-induced fibrosarcoma tumorigenesis. Cancer Detection and Prevention, 25(4), 362–368.
  • Bita, A., Rosu, A. F., Calina, D., Rosu, L., Zlatian, O., Dindere, C., & Simionescu, A. (2012). An alternative treatment for Candida infections with Nigella sativa extracts. European Journal of Hospital Pharmacy, 19(2), 162–162. https://doi.org/10.1136/ejhpharm-2012-000074.203
  • Chhikara, B., Rathi, B., Singh, J., & Fnu, P. (2020). Corona virus SARS-CoV-2 disease COVID-19: Infection, prevention and clinical advances of the prospective chemical drug therapeutics. Chemical Biology Letters, 7(1), 63–72.
  • Das, A., Henderson, F., Lowe, J. S., Wallace, G. C., Vandergrift, W. A., Lindhorst, S. M., Varma, A. K., Infinger, L. K., Giglio, P., Banik, N. L., Patel, S. J., & Cachia, D. (2018). Single agent efficacy of the HDAC inhibitor DATS in preclinical models of glioblastoma. Cancer Chemotherapy and Pharmacology, 82(6), 945–952. https://doi.org/10.1007/s00280-018-3684-7
  • El-Kadi, A., & Kandil, O. (1986). Effect of Nigella sativa on immunity. In Proceedings of the Fourth International Conference on Islamic Medicine, (pp. 344–348).
  • El-Najjar, N., Chatila, M., Moukadem, H., Vuorela, H., Ocker, M., Gandesiri, M., Schneider-Stock, R., & Gali-Muhtasib, H. (2010). Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis: An International Journal on Programmed Cell Death, 15(2), 183–195. https://doi.org/10.1007/s10495-009-0421-z
  • Evirgen, O., Gökçe, A., Ozturk, O. H., Nacar, E., Onlen, Y., Ozer, B., & Motor, V. K. (2011). Effect of thymoquinone on oxidative stress in Escherichia coli-induced pyelonephritis in rats. Current Therapeutic Research, Clinical and Experimental, 72(5), 204–215. https://doi.org/10.1016/j.curtheres.2011.09.002
  • Fathi, R., Abd Allah, D., & Helmy, I. (2023). Effect of green tea and black seed on methotrexate induced cytotoxicity of the oral mucosa, tongue and the submandibular salivary gland of Albino rats. Egyptian Dental Journal, 69(1), 413–426. https://doi.org/10.21608/edj.2022.175561.2352
  • Forouzanfar, F., Fazly Bazzaz, B. S., & Hosseinzadeh, H. (2014). Black cumin (Nigella sativa) and its constituent (thymoquinone): A review on antimicrobial effects. Iranian Journal of Basic Medical Sciences, 17(12), 929–938.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2009). 09, Revision D. 01. Wallingford, CT: Gaussian. Inc.
  • Gurjar, V., Iqra Kamil, S., Chandra, A., Qamar, I., & Singh, N. (2023). Drugs swapping in coronavirus strains: A structural biology view. Journal of Biomolecular Structure & Dynamics, 41(22), 13488–13495. https://doi.org/10.1080/07391102.2023.2175037
  • Hasan, N. A., Nawahwi, M. Z., & Malek, H. A. (2013). Anti microbial activity of Nigella sativa seed extract. Sains Malaysiana, 42, 143–147.
  • Hassan, S. A., Ahmed, W. A., Galeb, F. M., El-Taweel, M. A., & Abu-Bedair, F. A. (2008). In vitro challenge using thymoquinone on hepatocellular carcinoma (HepG2) cell line. Iranian Journal of Pharmaceutical Research, 7(4), 283–290.
  • Heidy, M. P., Judith, E. R., Ofir, P., Gabriel, R. R., Omar, V. B., & Guillermo, R. G. (2018). Design (Docking and QSAR Studies) and synthesis of histone deacetylase 2 (HDAC2) inhibitors series. Medicinal Chemistry Research, 27, 206–223.
  • Hosseini, M., Mohammadpour, T., Karami, R., Rajaei, Z., Sadeghnia, H. R., & Soukhtanloo, M. (2014). Effects of the hydroalcoholic extract of Nigella sativa on scopolamineinduced spatial memory impairment in rats and its possible mechanism. Chinese Journal of Integrative Medicine, 21(6), 438–444. https://doi.org/10.1007/s11655-014-1742-5
  • Hosseinzadeh, H., Moghim, F. F., & Mansouri, S. M. T. (2007). Effect of Nigella sativa seed extracts on ischemia-reperfusion in rat skeletal muscle. Pharmacologyonline, 2, 326–335.
  • Hussain, M. W., Sajjad, A., & Sumra, W. A. (2021). Stilbene-based natural compounds as promising drug candidates against COVID-19. Journal of Biomolecular Structure and Dynamics, 39(9), 3225–3234.
  • Jahan, S., Sun, J. M., He, S., & Davie, J. R. (2018). Transcription-dependent association of HDAC2 with active chromatin. Journal of Cellular Physiology, 233(2), 1650–1657. https://doi.org/10.1002/jcp.26078
  • Khan, M. R. (1999). Chemical composition and medicinal properties of Nigella sativa Linn. Inflammopharmacology, 7(1), 15–35. https://doi.org/10.1007/s10787-999-0023-y
  • Khan, M. A., & Younus, H. (2021). Potential implications of black seed and its principal constituent thymoquinone in the treatment of COVID-19 patients. Current Pharmaceutical Biotechnology, 22(10), 1315–1324. https://doi.org/10.2174/1389201021999201110205048
  • Mabrouk, G. M., Moselhy, S. S., Zohny, S. F., Ali, E. M., Helal, T. E., Amin, A. A., & Khalifa, A. A. (2002). Inhibition of methylnitrosourea (MNU) induced oxidative stress and carcinogenesis by orally administered honey and Nigella sativa in Sprague Dawley rats. Journal of Experimental & Clinical Cancer Research, 21(3), 341–346.
  • Mahmoud, B., Marwa, E.-Z., Shaymaa, A., Abdulmalek., & Yasmin, R. S. (2021). Health-promoting activities of Nigella sativa fixed oil. Springer Nature. https://doi.org/10.1007/978-3-030-48798-0_23
  • Mahmoud, A., Shabaan, S. E., Mayada, R. F., Abd El-Hack, M. E., Asmaa, F. K., Khan, S., Gopi, M., & Kuldeep, D. (2021). Health-promoting activities of Nigella sativa essential oil. Springer Nature. https://doi.org/10.1007/978-3-030-48798-0_29
  • Majdalawieh, A. F., & Fayyad, M. W. (2016). Recent advances on the anti-cancer properties of Nigella sativa, a widely used food additive. Journal of Ayurveda and Integrative Medicine, 7(3), 173–180. https://doi.org/10.1016/j.jaim.2016.07.004
  • Majdalawieh, A. F., Hmaidan, R., & Carr, R. I. (2010). Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity. Journal of Ethnopharmacology, 131(2), 268–275. https://doi.org/10.1016/j.jep.2010.06.030
  • Mitra, S. S., Nandy, S., & Dey, A. (2021). Promising plant-based bioactive natural products in combating SARS-CoV2 Novel Corona (COVID-19) virus infection. In K. Dua, S. Nammi, D. Chang, D.K. Chellappan, G. Gupta, & T. Collet (Eds.), Medicinal plants for lung diseases. Springer. https://doi.org/10.1007/978-981-33-6850-7_22.
  • Moharana, M., Maharana, P. C., Pattanayak, S. K., & Khan, F. (2023). Effect of temperature on hepatitis a virus and exploration of binding mode mechanism of phytochemicals from tinospora cordifolia: An insight into molecular docking, MM/GBSA, and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 1–17. https://doi.org/10.1080/07391102.2023.2194429
  • Moharana, M., Pattanayak, S. K., & Khan, F. (2023). Identification of novel potential hepatitis E virus inhibitors as seen from molecular docking, free energy landscape and molecular dynamics simulation studies. Molecular Simulation, 49(10), 967–981. https://doi.org/10.1080/08927022.2023.2202764
  • Moharana, M., Pattanayak, S. K., & Khan, F. (2023). Identification of phytochemicals from Eclipta alba and assess their potentiality against Hepatitis C virus envelope glycoprotein: Virtual screening, docking, and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 41(11), 5328–5344. https://doi.org/10.1080/07391102.2022.2085804
  • Mrakovcic, M., & Fröhlich, L. F. (2020). Molecular determinants of cancer therapy resistance to HDAC inhibitor-induced autophagy. Cancers, 12(1), 109. https://doi.org/10.3390/cancers12010109
  • Norwood, A. A., Tan, M., May, M., Tucci, M., & Benghuzzi, H. (2006). Comparison of potential chemotherapeutic agents, 5-fluorouracil, green tea and thymoquinone on colon cancer cells. Biomedical Sciences Instrumentation, 42, 350–356.
  • Norwood, A. A., Tucci, M., & Benghuzzi, H. (2007). A comparison of 5-fluorouracil and natural chemotherapeutic agents, EGCG and thymoquinone, delivered by sustained drug delivery on colon cancer cells. Biomedical Sciences Instrumentation, 43, 272–277.
  • Ohta, Y.,M., Nameer, K., Abd, M., Mohd, Y., Tan, Chin, P., Muhialdin, B. J., Alhelli, A., M., Meor, H., & Anis, S. (2016). The effects of different extraction methods on antioxidant properties, chemical composition, and thermal behavior of black seed oil. Evidence-Based Complementary and Alternative Medicine: ECAM, 2016, 6273817. https://doi.org/10.1155/2016/6273817.
  • Rahman, R., Binte, B., S., Rifat, R. H., Poran, S., Rahman, A., Islam, F., & Saha, B. (2021). Medicinal plants with anticancer effects available in Bangladesh. Journal of Pharmacognosy and Phytochemistry, 10(3), 41–49. https://doi.org/10.22271/phyto.2021.v10.i3a.14062
  • Rajkapoor, B., Anandan, R., & Jayakar, B. (2002). Anti-ulcer effect of Nigella sativa Linn against gastric ulcers in rats. Current Science, 82, 177–179.
  • Ramadan, M. F. (2021). Introduction to Black cumin (Nigella sativa) seeds: Chemistry, Technology, Functionality, and Applications. Springer Nature. https://doi.org/10.1007/978-3-030-48798-0_1
  • Randhawa, M. A. (2008). Black seed, Nigella sativa, deserves more attention. Journal of Ayub Medical College, Abbottabad: JAMC, 20(2), 1–2.
  • Randhawa, M. A., & Alghamdi, M. S. (2011). Anticancer activity of Nigella sativa (Black Seed): A review. The American Journal of Chinese Medicine, 39(6), 1075–1091. https://doi.org/10.1142/S0192415X1100941X
  • Raschi, A. B., Romano, E., Benavente, A. M., Ben Altabef, A., & Tuttolomondo, M. E. (2010). Structural and vibrational analysis of thymoquinone. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 77(2), 497–505. https://doi.org/10.1016/j.saa.2010.06.026
  • Rashwan, H. K., Mahgoub, S., Abuelezz, N. Z., & Amin, H. K. (2023). Black cumin seed (Nigella sativa) in inflammatory disorders: Therapeutic potential and promising molecular mechanisms. Drugs and Drug Candidates, 2(2), 516–537. https://doi.org/10.3390/ddc2020027
  • Ritchie, D. W. (2008). Recent progress and future directions in protein-protein docking. Current Protein & Peptide Science, 9(1), 1–15. http://www.loria.fr/∼ritchied/hex. https://doi.org/10.2174/138920308783565741
  • Salem, M. L. (2005). Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. International Immunopharmacology, 5(13–14), 1749–1770. https://doi.org/10.1016/j.intimp.2005.06.008
  • Salem, M. L., & Hossain, M. S. (2000). Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. International Journal of Immunopharmacology, 22(9), 729–740. https://doi.org/10.1016/s0192-0561(00)00036-9
  • Salma, C. R., B., Souhail, H., Basma, B., Christophe, D., & Claude, A. (2007). Hamadi., Nigella sativa L. Chemical composition and physiochemical characteristics of lipid fraction. Food Chemistry. 101(2), 673–681.
  • Salomi, N. J., Nair, S. C., Jayawardhanan, K. K., Varghese, C. D., & Panikka, K. R. (1992). Antitumour principles from Nigella sativa seeds. Cancer Letters, 63(1), 41–46. https://doi.org/10.1016/0304-3835(92)90087-c
  • Samarakoon, S. R., Thabrew, I., Galhena, P. B., De-Silva, D., & Tennekoon, K. H. (2010). A comparison of the cytotoxic potential of standardized aqueous and ethanolic extracts of a polyherbal mixture comprised of Nigella sativa (seeds), Hemidesmus indicus (roots) and Smilax glabra (rhizome). Pharmacognosy Research, 2(6), 335–342. https://doi.org/10.4103/0974-8490.75451
  • Samuel, P., Mulcahy, L. A., Furlong, F., Helen, O. M., Brooks, S. A., Fabbri, M., Pink, R. C., & Carter, D. R. F. (2018). Cisplatin induces the release of extracellular vesicles from ovarian cancer cells that can induce invasiveness and drug resistance in bystander cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 1737.
  • Shafi, G., Munshi, A., Hasan, T. N., Alshatwi, A. A., Jyothy, A., & David, K. Y. (2009). Anti cancer activity of Nigella sativa. Cancer Cell International, 9, 29. https://doi.org/10.1186/1475-2867-9-29
  • Shakila, S., Uzma, S., Muhammad, S., Hamid, A., Muhammad, Q., & Zunera, C. (2022). Thymoquinone induces Nrf2 mediated adaptive homeostasis: Implication for mercuric chloride-induced nephrotoxicity. ACS Omega. 7(8), 7370–7379. https://doi.org/10.1021/acsomega.2c00028
  • Siti, K., Hendra, K., Rizki, A., Suhartati, S., & Soetjipto, S. (2020). Potential inhibitor of COVID-19 Main protease (Mpro) from several medicinal plant compounds by molecular docking study. https://doi.org/10.20944/preprints;03:0226.v1
  • Sofia, R., Muhammad, Z., Mushtaq, A., Shazia, S., Sidra Nisar, A., & Omer, K. (2021). Micro and macroscopic characterization of traded Nigella sativa seeds using applied systematics techniques. Springer Nature.
  • Swamy, S. M. K., & Tan, B. K. H. (2000). Cytotoxic and immunopotentiating effects of ethanolic extract of Nigella sativa L. seeds. Journal of Ethnopharmacology, 70(1), 1–7. https://doi.org/10.1016/s0378-8741(98)00241-4
  • Tauseef, A., Faaiza, S., Subuhi, A., Iqbal, P., & Farah, K. (2022). Thymoquinone supplementation mitigates arsenic-induced cytotoxic and genotoxic alterations in rat liver. Journal of Trace Elements in Medicine and Biology, 74, 127067. https://doi.org/10.1016/j.jtemb.2022.127067/.
  • Ulasli, S. S., Celik, S., Gunay, E., Ozdemir, M., Hazman, O., Ozyurek, A., Koyuncu, T., & Unlu, M. (2013). Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pacific Journal of Cancer Prevention: APJCP, 14(10), 6159–6164. https://doi.org/10.7314/apjcp.2013.14.10.6159
  • Wagner, F. F., Weïwer, M., Steinbacher, S., Schomburg, A., Reinemer, P., Gale, J. P., Campbell, A. J., Fisher, S. L., Zhao, W.-N., Reis, S. A., Hennig, K. M., Thomas, M., Müller, P., Jefson, M. R., Fass, D. M., Haggarty, S. J., Zhang, Y.-L., & Holson, E. B. (2016). Kinetic and structural insights into the binding of histone deacetylase 1 and 2 (HDAC1, 2) inhibitors. Bioorganic & Medicinal Chemistry, 24(18), 4008–4015. https://doi.org/10.1016/j.bmc.2016.06.040
  • Wei, L., Waisudin, B., Amani, H. A., Emilie, D., Sami, G., Adem, G., Abdelhamid, E., & Abdelhamid, E. (2021). Food Applications of Nigella sativa Essential Oil. In Fawzy Ramadan, M. (Eds.), Black cumin (Nigella sativa) seeds: Chemistry, Technology, Functionality, and Applications. Food Bioactive Ingredients. Cham: Springer. https://doi.org/10.1007/978-3-030-48798-0_28
  • Worthen, D. R., Ghosheh, O. A., & Crooks, P. A. (1998). The in vitro anti-tumor activity of some crude and purified components of black seed, Nigella sativa L. Anticancer Research, 18(3A), 1527–1532.
  • Xueting Y., Fei Y., Miao Z., Cheng C., Baoying H., Peihua N., Xu L., Li Z., Erdan D., Chunli S., Siyan Z., Roujian L., Haiyan L., Wenjie T., Dongyang L. (2020). In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases, 71(5), 732–739. https://doi.org/10.1093/cid/ciaa237
  • Yang, F., Zhang, Y., Tariq, A., Jiang, X., Ahmed, Z., Zhihao, Z., Idrees, M., Azizullah, A., Adnan, M., & Bussmann, R. W. (2020). Food as medicine: A possible preventive measure against coronavirus disease (COVID‐19). Phytotherapy Research: PTR, 34(12), 3124–3136. https://doi.org/10.1002/ptr.6770
  • Zhang, T., Wei, D., Lu, T., Ma, D., Yu, K., Fang, Q., Zhang, Z., Wang, W., & Wang, J. (2020). CAY10683 and imatinib have synergistic effects in overcoming imatinib resistance via HDAC2 inhibition in chronic myeloid leukemia. RSC Advances, 10(2), 828–844. https://doi.org/10.1039/c9ra07971h
  • Zhao, H., Wang, Y., Yang, C., Zhou, J., Wang, L., Yi, K., Li, Y., Wang, Q., Shi, J., Kang, C., & Zeng, L. (2020). EGFR-vIII downregulated H2AZK4/7AC though the PI3K/AKT-HDAC2 axis to regulate cell cycle progression. Clinical and Translational Medicine, 9(1), 10. https://doi.org/10.1186/s40169-020-0260-7
  • Zhou, D., Dai, S. M., & Tong, Q. (2020). COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. The Journal of Antimicrobial Chemotherapy, 75(7), 1667–1670. https://doi.org/10.1093/jac/dkaa114
  • Zhu, S., Wu, J., Liu, S., Jiang, T., & Deng, Y. (2019). Phe-125 and Phe-226 of pig cytochrome P450 1A2 stabilize the binding of aflatoxin B1 and 7-ethoxyresorufin through the key CH/π interactions. Biochemical Pharmacology, 166, 292–299. https://doi.org/10.1016/j.bcp.2019.05.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.