75
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Deciphering Campylobacter jejuni DsbA1 protein dynamics in the presence of anti-virulent compounds: a multi-pronged computer-aided approach

ORCID Icon, ORCID Icon & ORCID Icon
Received 23 Aug 2023, Accepted 02 Jan 2024, Published online: 17 Jan 2024

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Amod, L., Mohunlal, R., Teixeira, N., Egan, T. J., & Wicht, K. J. (2023). Identifying inhibitors of β-haematin formation with activity against chloroquine-resistant Plasmodium falciparum malaria parasites via virtual screening approaches. Scientific Reports, 13(1), 2648. https://doi.org/10.1038/s41598-023-29273-w
  • Assenov, Y., Ramírez, F., Schelhorn, S.-E., Lengauer, T., & Albrecht, M. (2007). Computing topological parameters of biological networks. Bioinformatics (Oxford, England), 24(2), 282–284. https://doi.org/10.1093/bioinformatics/btm554
  • Authority, E. F. S, for Disease Prevention, E. C., & Control. (2021). The European Union one health 2019 zoonoses report. Efsa Journal, 19(2), e06406.
  • Azam, F. (2021). Elucidation of teicoplanin interactions with drug targets related to COVID-19. Antibiotics (Basel, Switzerland), 10(7), 856. https://doi.org/10.3390/antibiotics10070856
  • Bai, F., Li, Z., Umezawa, A., Terada, N., & Jin, S. (2018). Bacterial type III secretion system as a protein delivery tool for a broad range of biomedical applications. Biotechnology Advances, 36(2), 482–493. https://doi.org/10.1016/j.biotechadv.2018.01.016
  • Baig, M. H., Ahmad, K., Roy, S., Ashraf, J. M., Adil, M., Siddiqui, M. H., Khan, S., Kamal, M. A., Provazník, I., & Choi, I. (2016). Computer aided drug design: Success and limitations. Current Pharmaceutical Design, 22(5), 572–581. https://doi.org/10.2174/1381612822666151125000550
  • Banaś, A. M., Bocian-Ostrzycka, K. M., Dunin-Horkawicz, S., Ludwiczak, J., Wilk, P., Orlikowska, M., Wyszyńska, A., Dąbrowska, M., Plichta, M., Spodzieja, M., Polańska, M. A., Malinowska, A., & Jagusztyn-Krynicka, E. K. & others. (2021). Interplay between DsbA1, DsbA2 and C8J_1298 periplasmic oxidoreductases of Campylobacter jejuni and their impact on bacterial physiology and pathogenesis. International Journal of Molecular Sciences, 22(24), 13451. https://doi.org/10.3390/ijms222413451
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/jcc.21287
  • Bushweller, J. H. (2020). Protein disulfide exchange by the intramembrane enzymes DsbB, DsbD, and CcdA. Journal of Molecular Biology, 432(18), 5091–5103. (https://doi.org/10.1016/j.jmb.2020.04.008
  • Connerton, I. F., & Connerton, P. L. (2017). Campylobacter foodborne disease. In Foodborne Diseases (pp. 209–221). Elsevier.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(January), 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In Chemical biology (pp. 243–250). Springer.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9(1), 71. https://doi.org/10.1186/1741-7007-9-71
  • Endtz, H. P, T. P. B. T.-H. T. M. and E. I. D. (2020). 50 - Campylobacter Infections. E. T. Ryan, D. R. Hill, T. Solomon, N. E. Aronson, & Tenth E. Endy (eds.) (pp. 507–511). Elsevier. https://doi.org/10.1016/B978-0-323-55512-8.00050-8
  • Früh, V., Zhou, Y., Chen, D., Loch, C., Eiso, A. B., Grinkova, Y. N., Verheij, H., Sligar, S. G., Bushweller, J. H., & Siegal, G. (2010). Application of fragment-based drug discovery to membrane proteins: Identification of ligands of the integral membrane enzyme DsbB. Chemistry & Biology, 17(8), 881–891. https://doi.org/10.1016/j.chembiol.2010.06.011
  • Fusani, L., Palmer, D. S., Somers, D. O., & Wall, I. D. (2020). Exploring ligand stability in protein crystal structures using binding pose metadynamics. Journal of Chemical Information and Modeling, 60(3), 1528–1539. https://doi.org/10.1021/acs.jcim.9b00843
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Guddat, L. W., Bardwell, J. C. A., & Martin, J. L. (1998). Crystal structures of reduced and oxidized DsbA: Investigation of domain motion and thiolate stabilization. Structure, 6(6),757-767. https://doi.org/10.1016/S0969-2126(98)00077-X
  • Halgren, T. A. (1996). Merck molecular force field. Journal of Computational Chemistry. 17(5–6), 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry: AABC, 8, 37–47. https://doi.org/10.2147/AABC.S70333
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Kagami, L. P., das Neves, G. M., Timmers, L. F. S. M., Caceres, R. A., & Eifler-Lima, V. L. (2020). Geo-Measures: A PyMOL plugin for protein structure ensembles analysis. Computational Biology and Chemistry, 87, 107322. https://doi.org/10.1016/j.compbiolchem.2020.107322
  • Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology, 9(9), 646–652. https://doi.org/10.1038/nsb0902-646
  • Kaufman, M. R., & Taylor, R. K. (2020). Fimbriae of Vibrio cholerae. In Fimbriae. (pp. 157–170). CRC Press.
  • Kiran, A., Alvarez, M. J. R., Han, K. S. S., Kumar, A., Chakraborty, D., Mugisha, L., Elbadawi, H., Khalaf, Y., Panicker, A., & Souda, S, others. (2021). Campylobacter: A foodborne pathogen with emerging antimicrobial resistance. Preprints, 2021, 2021050033. https://doi.org/10.20944/preprints202105.0033.v1
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science: A Publication of the Protein Society, 27(1), 129–134. https://doi.org/10.1002/pro.3289
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
  • Lee, J., Hitzenberger, M., Rieger, M., Kern, N. R., Zacharias, M., & Im, W. (2020). CHARMM-GUI supports the Amber force fields. The Journal of Chemical Physics, 153(3), 035103. https://doi.org/10.1063/5.0012280
  • Lin, J., Sahakian, D. C., De Morais, S. M., Xu, J. J., Polzer, R. J., & Winter, S. M. (2003). The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Current Topics in Medicinal Chemistry, 3(10), 1125–1154. https://doi.org/10.2174/1568026033452096
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Maiorov, V. N., & Crippen, G. M. (1994). Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. Journal of Molecular Biology, 235(2), 625–634. https://doi.org/10.1006/jmbi.1994.1017
  • McGibbon, R. T., Beauchamp, K. A., Harrigan, M. P., Klein, C., Swails, J. M., Hernández, C. X., Schwantes, C. R., Wang, L.-P., Lane, T. J., & Pande, V. S. (2015). MDTraj: A modern open library for the analysis of molecular dynamics trajectories. Biophysical Journal, 109(8), 1528–1532. https://doi.org/10.1016/j.bpj.2015.08.015
  • Mukherjee, S., & Zhang, Y. (2011). Protein-protein complex structure predictions by multimeric threading and template recombination. Structure (London, England: 1993), 19(7), 955–966. https://doi.org/10.1016/j.str.2011.04.006
  • Parveen, D., Das, A., Amin, S., Alam, M. M., Akhter, M., Ahmed Khan, M., Ali, R., Anwer, T., Sheikh, K. A., Azam, F., & Shaquiquzzaman, M. (2023). Effectiveness of estrogen and its derivatives over dexamethasone in the treatment of COVID-19. Journal of Biomolecular Structure & Dynamics, In Press. https://doi.org/10.1080/07391102.2023.2205944
  • Peng, J., Wang, W., Yu, Y., Gu, H., & Huang, X. (2018). Clustering algorithms to analyze molecular dynamics simulation trajectories for complex chemical and biological systems. Chinese Journal of Chemical Physics, 31(4), 404–420. https://doi.org/10.1063/1674-0068/31/cjcp1806147
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Przepiora, T., Figaj, D., Bogucka, A., Fikowicz-Krosko, J., Czajkowski, R., Hugouvieux-Cotte-Pattat, N., & Skorko-Glonek, J. (2022). The periplasmic oxidoreductase DsbA is required for virulence of the phytopathogen Dickeya solani. International Journal of Molecular Sciences, 23(2), 697. https://doi.org/10.3390/ijms23020697
  • Qin, X., Wang, X., & Shen, Z. (2023). The rise of antibiotic resistance in Campylobacter. Current Opinion in Gastroenterology, 39(1), 9–15. https://doi.org/10.1097/MOG.0000000000000901
  • Rusch, M., Spielmeyer, A., Zorn, H., & Hamscher, G. (2019). Degradation and transformation of fluoroquinolones by microorganisms with special emphasis on ciprofloxacin. Applied Microbiology and Biotechnology, 103(17), 6933–6948. https://doi.org/10.1007/s00253-019-10017-8
  • Sadybekov, A. V., & Katritch, V. (2023). Computational approaches streamlining drug discovery. Nature, 616(7958), 673–685. https://doi.org/10.1038/s41586-023-05905-z
  • Sahakyan, H. (2021). Improving virtual screening results with MM/GBSA and MM/PBSA rescoring. Journal of Computer-Aided Molecular Design, 35(6), 731–736. https://doi.org/10.1007/s10822-021-00389-3
  • Santos-Martin, C., Wang, G., Subedi, P., Hor, L., Totsika, M., Paxman, J. J., & Heras, B. (2021). Structural bioinformatic analysis of DsbA proteins and their pathogenicity associated substrates. Computational and Structural Biotechnology Journal, 19, 4725–4737. https://doi.org/10.1016/j.csbj.2021.08.018
  • Singh, G., Al-Fahad, D., Al-Zrkani, M. K., Chaudhuri, T. K., Soni, H., Tandon, S., Narasimhaji, C. V., Azam, F., & Patil, R. (2023). Identification of potential inhibitors of HER2 targeting breast cancer—a structure-based drug design approach. Journal of Biomolecular Structure & Dynamics, In Press. https://doi.org/10.1080/07391102.2023.2246576
  • Smith, R. P., Paxman, J. J., Scanlon, M. J., & Heras, B. (2016). Targeting bacterial Dsb proteins for the development of anti-virulence agents. Molecules (Basel, Switzerland), 21(7), 811. https://doi.org/10.3390/molecules21070811
  • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., Theuretzbacher, U., et al. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3), 318–327. https://doi.org/10.1016/S1473-3099(17)30753-3
  • Tubiana, T., Carvaillo, J.-C., Boulard, Y., & Bressanelli, S. (2018). TTClust: A versatile molecular simulation trajectory clustering program with graphical summaries. Journal of Chemical Information and Modeling, 58(11), 2178–2182. https://doi.org/10.1021/acs.jcim.8b00512
  • Tuccinardi, T. (2021). What is the current value of MM/PBSA and MM/GBSA methods in drug discovery?. Taylor & Francis.
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Van De Waterbeemd, H., & Gifford, E. (2003). ADMET in silico modelling: Towards prediction paradise? Nature Reviews. Drug Discovery, 2(3), 192–204. https://doi.org/10.1038/nrd1032
  • Volynets, G. P., Barthels, F., Hammerschmidt, S. J., Moshynets, O. V., Lukashov, S. S., Starosyla, S. A., Vyshniakova, H. V., Iungin, O. S., Bdzhola, V. G., Prykhod’ko, A. O., Syniugin, A. R., Sapelkin, V. M., Yarmoluk, S. M., & Schirmeister, T. (2022). Identification of novel small-molecular inhibitors of Staphylococcus aureus sortase A using hybrid virtual screening. The Journal of Antibiotics, 75(6), 321–332. https://doi.org/10.1038/s41429-022-00524-8
  • Wang, J., & Urban, L. (2004). The impact of early ADME profiling on drug discovery and development strategy. DDW Drug Discovery World, 5(4), 73–86.
  • Whitty, A. (2011). Growing PAINS in academic drug discovery. Future Medicinal Chemistry, 3(7), 797–801. https://doi.org/10.4155/fmc.11.44
  • Wieczorek, K., Wołkowicz, T., & Osek, J. (2018). Antimicrobial resistance and virulence-associated traits of Campylobacter jejuni isolated from poultry food chain and humans with diarrhea. Frontiers in Microbiology, 9, 1508. https://doi.org/10.3389/fmicb.2018.01508
  • Wu, F., Zhou, Y., Li, L., Shen, X., Chen, G., Wang, X., Liang, X., Tan, M., & Huang, Z. (2020). Computational approaches in preclinical studies on drug discovery and development. Frontiers in Chemistry, 8, 726. https://doi.org/10.3389/fchem.2020.00726
  • Young, K. T., Davis, L. M., & Dirita, V. J. (2007). Campylobacter jejuni: Molecular biology and pathogenesis. Nature Reviews. Microbiology, 5(9), 665–679. https://doi.org/10.1038/nrmicro1718

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.