56
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular interaction of antiviral drug penciclovir with DNA and HSA insights from experimental and docking studies

, &
Received 31 Jul 2023, Accepted 11 Oct 2023, Published online: 23 Jan 2024

References

  • Abdelhameed, A. S., Bakheit, A. H., Almutairi, F. M., AlRabiah, H., & Kadi, A. A. (2017). Biophysical and in silico studies of the interaction between the anti-viral agents acyclovir and penciclovir, and human serum albumin. Molecules (Basel, Switzerland), 22(11), 1906. https://doi.org/10.3390/molecules22111906
  • Aghili, Z., Taheri, S., Zeinabad, H. A., Pishkar, L., Saboury, A. A., Rahimi, A., & Falahati, M. (2016). Investigating the interaction of Fe nanoparticles with lysozyme by biophysical and molecular docking studies. PLoS One, 11(10), e0164878. https://doi.org/10.1371/journal.pone.0164878
  • Alam, P., Chaturvedi, S. K., Siddiqi, M. K., Rajpoot, R. K., Ajmal, M. R., Zaman, M., & Khan, R. H. (2016). Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases. Scientific Reports, 6(1), 26759. https://doi.org/10.1038/srep26759
  • Awwad, S. W., Serrano-Benitez, A., Thomas, J. C., Gupta, V., & Jackson, S. P. (2023). Revolutionizing DNA repair research and cancer therapy with CRISPR–Cas screens. Nature Reviews. Molecular Cell Biology, 24(7), 477–494. https://doi.org/10.1038/s41580-022-00571-x
  • Bannister, W., & Bannister, J. (1974). Circular dichroism and protein structure. International Journal of Biochemistry, 5(9–10), 673–677. https://doi.org/10.1016/0020-711X(74)90052-4
  • Bhattacharjee, P., Sarkar, S., Pandya, P., & Bhadra, K. (2016). Targeting different RNA motifs by beta carboline alkaloid, harmalol: A comparative photophysical, calorimetric, and molecular docking approach. Journal of Biomolecular Structure & Dynamics, 34(12), 2722–2740. https://doi.org/10.1080/07391102.2015.1126694
  • Budama-Kilinc, Y., Gok, B., Aluc, C. C., & Kecel-Gunduz, S. (2023). In vitro and in silico evaluation of the design of nano-phyto-drug candidate for oral use against Staphylococcus aureus. PeerJ. 11, e15523. https://doi.org/10.7717/peerj.15523
  • Byadagi, K., Meti, M., Nandibewoor, S., & Chimatadar, S. (2017). Investigation of binding behaviour of procainamide hydrochloride with human serum albumin using synchronous, 3D fluorescence and circular dichroism. Journal of Pharmaceutical Analysis, 7(2), 103–109. https://doi.org/10.1016/j.jpha.2016.07.004
  • Chandrasekaran, S., Sudha, N., Premnath, D., & Enoch, I. V. (2015). Binding of a chromen-4-one Schiff’s base with bovine serum albumin: Capping with β-cyclodextrin influences the binding. Journal of Biomolecular Structure & Dynamics, 33(9), 1945–1956. https://doi.org/10.1080/07391102.2014.980323
  • Evstigneev, M. P., & Shestopalova, A. V. (2014). Structure, thermodynamics and energetics of drug-DNA interactions: Computer modeling and experiment Application of computational techniques in pharmacy and medicine (pp. 21–57). Springer.
  • Ghosh, T., Sarkar, S., Bhattacharjee, P., Jana, G. C., Hossain, M., Pandya, P., & Bhadra, K. (2020). In vitro relationship between serum protein binding to beta-carboline alkaloids: A comparative cytotoxic, spectroscopic and calorimetric assays. Journal of Biomolecular Structure & Dynamics, 38(4), 1103–1118. https://doi.org/10.1080/07391102.2019.1595727
  • Gok, B., Budama-Kilinc, Y., & Kecel-Gunduz, S. (2023). Anti-aging activity of Syn-Ake peptide by in silico approaches and in vitro tests. Journal of Biomolecular Structure & Dynamics, 1–15. https://doi.org/10.1080/07391102.2023.2223681
  • Hadidi, S., Varmira, K., & Soltani, L. (2023). Evaluation of DNA damage induced by acesulfame potassium: Spectroscopic, molecular modeling simulations and toxicity studies. Journal of Biomolecular Structure & Dynamics, 41(13), 6262–6271. https://doi.org/10.1080/07391102.2022.2105955
  • Hodge Vere, R., & Cheng, Y. (1993). The mode of action of penciclovir. Antiviral Chemistry and Chemotherapy, 4(6_suppl), 13–24. https://doi.org/10.1177/09563202930040S601
  • Kandagal, P., Ashoka, S., Seetharamappa, J., Shaikh, S., Jadegoud, Y., & Ijare, O. B. (2006). Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. Journal of Pharmaceutical and Biomedical Analysis, 41(2), 393–399. https://doi.org/10.1016/j.jpba.2005.11.037
  • Karanlık, C. C., Karanlık, G., Gok, B., Budama-Kilinc, Y., Kecel-Gunduz, S., & Erdoğmuş, A. (2023). Exploring anticancer properties of novel nano-formulation of bodipy compound, photophysicochemical, in vitro and in silico evaluations. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 301, 122964. https://doi.org/10.1016/j.saa.2023.122964
  • Kecel-Gunduz, S., Budama-Kilinc, Y., Bicak, B., Gok, B., Belmen, B., Aydogan, F., & Yolacan, C. (2023). New coumarin derivative with potential antioxidant activity: Synthesis, DNA binding and in silico studies (Docking, MD, ADMET). Arabian Journal of Chemistry, 16(2), 104440. https://doi.org/10.1016/j.arabjc.2022.104440
  • Knappe, G. A., Wamhoff, E.-C., & Bathe, M. (2023). Functionalizing DNA origami to investigate and interact with biological systems. Nature Reviews. Materials, 8(2), 123–138. https://doi.org/10.1038/s41578-022-00517-x
  • Korba, B. E., & Boyd, M. R. (1996). Penciclovir is a selective inhibitor of hepatitis B virus replication in cultured human hepatoblastoma cells. Antimicrobial Agents and Chemotherapy, 40(5), 1282–1284. https://doi.org/10.1128/AAC.40.5.1282
  • Kou, S.-B., Zhou, K.-L., Lin, Z.-Y., Lou, Y.-Y., Wang, B.-L., Shi, J.-H., & Liu, Y.-X. (2022). Investigation of binding characteristics of ritonavir with calf thymus DNA with the help of spectroscopic techniques and molecular simulation. Journal of Biomolecular Structure & Dynamics, 40(7), 2908–2916. https://doi.org/10.1080/07391102.2020.1844057
  • Luo, Y.-J., Wang, B.-L., Kou, S.-B., Lin, Z.-Y., Zhou, K.-L., Lou, Y.-Y., & Shi, J.-H. (2020). Assessment on the binding characteristics of dasatinib, a tyrosine kinase inhibitor to calf thymus DNA: Insights from multi-spectroscopic methodologies and molecular docking as well as DFT calculation. Journal of Biomolecular Structure & Dynamics, 38(14), 4210–4220. https://doi.org/10.1080/07391102.2019.1676824
  • Marky, L. A., Snyder, J. G., Remeta, D. P., & Breslauer, K. J. (1983). Thermodynamics of drug-DNA interactions. Journal of Biomolecular Structure & Dynamics, 1(2), 487–507. https://doi.org/10.1080/07391102.1983.10507457
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). Using autodock for ligand‐receptor docking. Current Protocols in Bioinformatics, Chapter 8(1), Unit 8.14. 11-18.14. 40 https://doi.org/10.1002/0471250953.bi0814s24
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nakhjiri, M. Z., Asadi, S., Hasan, A., Babadaei, M. M. N., Vahdani, Y., Rasti, B., Ale-Ebrahim, M., Arsalan, N., Goorabjavari, S. V. M., Haghighat, S., Sharifi, M., Shahpasand, K., Akhtari, K., & Falahati, M. (2020). Exploring the interaction of synthesized nickel oxide nanoparticles through hydrothermal method with hemoglobin and lymphocytes: Bio-thermodynamic and cellular studies. Journal of Molecular Liquids, 317, 113893. https://doi.org/10.1016/j.molliq.2020.113893
  • Pandya, P., Agarwal, L. K., Gupta, N., & Pal, S. (2014). Molecular recognition pattern of cytotoxic alkaloid vinblastine with multiple targets. Journal of Molecular Graphics & Modelling, 54, 1–9. https://doi.org/10.1016/j.jmgm.2014.09.001
  • Paul, B. K., & Guchhait, N. (2011). Exploring the strength, mode, dynamics, and kinetics of binding interaction of a cationic biological photosensitizer with DNA: Implication on dissociation of the drug–DNA complex via detergent sequestration. The Journal of Physical Chemistry. B, 115(41), 11938–11949. https://doi.org/10.1021/jp206589e
  • Rajan, D., Rajamanikandan, R., & Ilanchelian, M. (2023). Investigating the biophysical interaction of serum albumins-gold nanorods using hybrid spectroscopic and computational approaches with the intent of enhancing cytotoxicity efficiency of targeted drug delivery. Journal of Molecular Liquids, 377, 121541. https://doi.org/10.1016/j.molliq.2023.121541
  • Rehman, S. U., Sarwar, T., Ishqi, H. M., Husain, M. A., Hasan, Z., & Tabish, M. (2015). Deciphering the interactions between chlorambucil and calf thymus DNA: A multi-spectroscopic and molecular docking study. Archives of Biochemistry and Biophysics, 566, 7–14. https://doi.org/10.1016/j.abb.2014.12.013
  • Sabour, A. A., Khan, A., & Alhuzani, M. R. (2022). Insight into the interaction mechanism of HSA with aztreonam: A multispectroscopic and computational approach. Molecules (Basel, Switzerland), 27(22), 7858. https://doi.org/10.3390/molecules27227858
  • Sabziparvar, N., Saeedi, Y., Nouri, M., Najafi Bozorgi, A. S., Alizadeh, E., Attar, F., Akhtari, K., Mousavi, S. E., & Falahati, M. (2018). Investigating the interaction of silicon dioxide nanoparticles with human hemoglobin and lymphocyte cells by biophysical, computational, and cellular studies. The Journal of Physical Chemistry. B, 122(15), 4278–4288. https://doi.org/10.1021/acs.jpcb.8b00193
  • Schenkel, F., Csajka, C., Baglivo, E., Kondo-Oestreicher, M., Dayer, P., Gex-Fabry, M., & Daali, Y. (2013). Intraocular penetration of penciclovir after oral administration of famciclovir: A population pharmacokinetic model. The Journal of Antimicrobial Chemotherapy, 68(7), 1635–1641. https://doi.org/10.1093/jac/dkt064
  • Shahabadi, N., & Zendehcheshm, S. (2022). Interaction of human hemoglobin (HHb) and cytochrome c (Cyt c) with biogenic chloroxine-conjugated silver nanoflowers: Spectroscopic and molecular docking approaches. Journal of Biomolecular Structure & Dynamics, 40(19), 8913–8924. https://doi.org/10.1080/07391102.2021.1919555
  • Shahabadi, N., Ghaffari, L., Mardani, Z., & Hadidi, S. (2023). Analysis of the binding mechanism for a water-soluble Pd (II) complex containing β-amino alcohols with HSA applying experimental and computational methods. Journal of Biomolecular Structure & Dynamics, 40, 1–12. https://doi.org/10.1080/07391102.2023.2216281
  • Shahabadi, N., Hadidi, S., & Kalar, Z. M. (2016). Biophysical studies on the interaction of platinum (II) complex containing antiviral drug ribavirin with human serum albumin. Journal of Photochemistry and Photobiology. B, Biology, 160, 376–382. https://doi.org/10.1016/j.jphotobiol.2016.05.006
  • Shahabadi, N., Khorshidi, A., & Moghadam, N. H. (2013). Study on the interaction of the epilepsy drug, zonisamide with human serum albumin (HSA) by spectroscopic and molecular docking techniques. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 114, 627–632. https://doi.org/10.1016/j.saa.2013.05.092
  • Shahabadi, N., Zendehcheshm, S., & Khademi, F. (2021). Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnology Reports (Amsterdam, Netherlands), 30, e00615. https://doi.org/10.1016/j.btre.2021.e00615
  • Shahabadi, N., Zendehcheshm, S., Momeni, B. Z., & Abbasi, R. (2020). Antiproliferative activity and human serum albumin binding propensity of [SnMe2Cl2 (bu2bpy)]: multi-spectroscopic analysis, atomic force microscopy, and computational studies. Journal of Coordination Chemistry, 73(8), 1349–1376. https://doi.org/10.1080/00958972.2020.1775821
  • Shahinyan, G. A., Ghazoyan, H. H., & Markarian, S. A. (2023). The effect of dimethylsulfoxide (or diethylsulfoxide) on methylene blue-calf thymus dna binding in aqueous solutions by fluorescence polarization and steady-state fluorescence quenching. Journal of Solution Chemistry, 52(6), 708–719. https://doi.org/10.1007/s10953-023-01263-6
  • Shahraki, S., Razmara, Z., Delarami, H. S., & Poorsargol, M. (2023). Probing the combination of erlotinib hydrochloride, an anticancer drug, and human serum albumin. Spectroscopic, molecular docking and molecular dynamic analysis. Luminescence: The Journal of Biological and Chemical Luminescence, 38(6), 772–782.
  • Shamsi, A., Ahmed, A., & Bano, B. (2018). Probing the interaction of anticancer drug temsirolimus with human serum albumin: Molecular docking and spectroscopic insight. Journal of Biomolecular Structure & Dynamics, 36(6), 1479–1489. https://doi.org/10.1080/07391102.2017.1326320
  • Sudha, N., Sameena, Y., Chandrasekaran, S., Enoch, I. V., & Premnath, D. (2015). Alteration of the binding strength of dronedarone with bovine serum albumin by β-cyclodextrin: A spectroscopic study. Spectroscopy Letters, 48(2), 112–119. https://doi.org/10.1080/00387010.2013.858052
  • Sur, S. S., Rabbani, L. D., Libman, L., & Breslow, E. (1979). Fluorescence studies of native and modified neurophysins. Effects of peptides and pH. Biochemistry, 18(6), 1026–1036. https://doi.org/10.1021/bi00573a015
  • Tabassum, S., Al-Asbahy, W. M., Afzal, M., & Arjmand, F. (2012). Synthesis, characterization and interaction studies of copper based drug with human serum albumin (HSA): spectroscopic and molecular docking investigations. Journal of Photochemistry and Photobiology. B, Biology, 114, 132–139. https://doi.org/10.1016/j.jphotobiol.2012.05.021
  • Wang, Y., Shi, N., He, Y., Li, Y., & Zheng, Q. (2023). A direct approach toward investigating DNA–ligand interactions via surface-enhanced Raman spectroscopy combined with molecular dynamics simulations. Physical Chemistry Chemical Physics, 25(3), 2153–2160. https://doi.org/10.1039/D2CP04566D
  • Xu, S., Kondal, M. D., Ahmad, A., Zhu, R., Fan, L., Zaborniak, P., Madden, K. S., de Souza, J. V., & Bronowska, A. K. (2023). Mechanistic investigation of the androgen receptor DNA-binding domain and modulation via direct interactions with DNA abasic sites: Understanding the mechanisms involved in castration-resistant prostate cancer. International Journal of Molecular Sciences, 24(2), 1270. https://doi.org/10.3390/ijms24021270
  • Yousefvand, P., Mohammadi, E., Zhuang, Y., Bloukh, S. H., Edis, Z., Gamasaee, N. A., Zanganeh, H., Mansour, F. N., Heidarzadeh, M., Attar, F., Babadaei, M. M. N., Keshtali, A. B., Shahpasand, K., Sharifi, M., Falahati, M., & Cai, Y. (2021). Biothermodynamic, antiproliferative and antimicrobial properties of synthesized copper oxide nanoparticles. Journal of Molecular Liquids, 324, 114693. https://doi.org/10.1016/j.molliq.2020.114693
  • Yousuf, S., & Enoch, I. (2012). Spectroscopic investigation of interaction of 6-methoxyflavanone and its β-cyclodextrin inclusion complex with calf thymus DNA. Chemical Papers, 66(8), 787–794. https://doi.org/10.2478/s11696-012-0180-0
  • Yousuf, S., Alex, R., Selvakumar, P. M., Enoch, I. V., Subramanian, P. S., & Sun, Y. (2015). Picking out logic operations in a naphthalene β‐diketone derivative by using molecular encapsulation, controlled protonation, and DNA binding. ChemistryOpen, 4(4), 497–508. https://doi.org/10.1002/open.201500034
  • Zargar, S., Wani, T. A., Alsaif, N. A., & Khayyat, A. I. A. (2022). A comprehensive investigation of interactions between antipsychotic drug quetiapine and human serum albumin using multi-spectroscopic, biochemical, and molecular modeling approaches. Molecules (Basel, Switzerland), 27(8), 2589. https://doi.org/10.3390/molecules27082589
  • Zhang, G., Zhao, N., Hu, X., & Tian, J. (2010). Interaction of alpinetin with bovine serum albumin: Probing of the mechanism and binding site by spectroscopic methods. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 76(3-4), 410–417. https://doi.org/10.1016/j.saa.2010.04.009
  • Zhang, S., Zhu, Y., Tu, C., Wei, H., Yang, Z., Lin, L., Ding, J., Zhang, J., & Guo, Z. (2004). A novel cytotoxic ternary copper (II) complex of 1, 10-phenanthroline and L-threonine with DNA nuclease activity. Journal of Inorganic Biochemistry, 98(12), 2099–2106. https://doi.org/10.1016/j.jinorgbio.2004.09.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.