99
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification of novel inhibitor phytoconstituents for Influenza A H3N2: an in silico approach

, , , , , & ORCID Icon show all
Received 23 Aug 2023, Accepted 26 Dec 2023, Published online: 21 Jan 2024

References

  • Alhazmi, M. I. (2015). Molecular docking of selected phytocompounds with H1N1 proteins. Bioinformation, 11(4), 196–202. https://doi.org/10.6026/97320630011196
  • Allen, J. D., & Ross, T. M. (2018). H3N2 influenza viruses in humans: Viral mechanisms, evolution, and evaluation. Human Vaccines & Immunotherapeutics, 14(8), 1840–1847. https://doi.org/10.1080/21645515.2018.1462639
  • Chong, Y., & Ikematsu, H. (2018). Is seasonal vaccination a contributing factor to the selection of influenza epidemic variants? Human Vaccines & Immunotherapeutics, 14(3), 518–522. https://doi.org/10.1080/21645515.2017.1373228
  • Eichberg, J., Maiworm, E., Oberpaul, M., Czudai-Matwich, V., Lüddecke, T., Vilcinskas, A., & Hardes, K. (2022). Antiviral potential of natural resources against influenza virus infections. Viruses, 14(11), 2452. https://doi.org/10.3390/v14112452
  • Guo, Y., Ma, A., Wang, X., Yang, C., Chen, X., Li, G., & Qiu, F. (2022). Research progress on the antiviral activities of natural products and their derivatives: Structure-activity relationships. Frontiers in Chemistry, 10, 1005360. https://doi.org/10.3389/fchem.2022.1005360
  • Kaur, B., Rolta, R., Salaria, D., Kumar, B., Fadare, O. A., da Costa, R. A., Ahmad, A., Al-Rawi, M. B. A., Raish, M., & Rather, I. A. (2022). An in silico investigation to explore anti-cancer potential of Foeniculum vulgare Mill. phytoconstituents for the management of human breast cancer. Molecules (Basel, Switzerland), 27(13), 4077. https://doi.org/10.3390/molecules27134077
  • Knight, M. L., Fan, H., Bauer, D. L. V., Grimes, J. M., Fodor, E., & Keown, J. R. (2021). Structure of an H3N2 influenza virus nucleoprotein. Acta Crystallographica. Section F, Structural Biology Communications, 77(Pt 7), 208–214. https://doi.org/10.1107/S2053230X2100635X
  • Le, K., Tran, D., Nguyen, A., & Le, L. (2020). A screening of neuraminidase inhibition activities of isoquinolone alkaloids in coptis chinensis using molecular docking and pharmacophore analysis. ACS Omega, 5(46), 30315–30322. https://doi.org/10.1021/acsomega.0c04847
  • Mehta, J., Rolta, R., Salaria, D., Awofisayo, O., Fadare, O. A., Sharma, P. P., Rathi, B., Chopra, A., Kaushik, N., Choi, E. H., & Kaushik, N. K. (2021). Phytocompounds from Himalayan medicinal plants as potential drugs to treat multidrug-resistant Salmonella typhimurium: An in silico approach. Biomedicines, 9(10), 1402. https://doi.org/10.3390/biomedicines9101402
  • Moradi, M.-T., Karimi, A., Fotouhi, F., et al. (2017). In vitro and in vivo effects of Peganum harmala L. seeds extract against influenza A virus. Avicenna J Phytomed, 7, 519–530.
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 1-4. https://doi.org/10.1186/1758-2946-3-33
  • Petrova, V. N., & Russell, C. A. (2018). The evolution of seasonal influenza viruses. Nature Reviews. Microbiology, 16(1), 47–60. https://doi.org/10.1038/nrmicro.2017.118
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera? A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Rolta, R., Kumar, V., Sourirajan, A., Upadhyay, N. K., & Dev, K. (2020). Bioassay guided fractionation of rhizome extract of Rheum emodi wall as bio-availability enhancer of antibiotics against bacterial and fungal pathogens. Journal of Ethnopharmacology, 257, 112867. https://doi.org/10.1016/j.jep.2020.112867
  • Rolta, R., Salaria, D., Kumar, V., Patel, C. N., Sourirajan, A., Baumler, D. J., & Dev, K. (2022). Molecular docking studies of phytocompounds of Rheum emodi Wall with proteins responsible for antibiotic resistance in bacterial and fungal pathogens: In silico approach to enhance the bio-availability of antibiotics. Journal of Biomolecular Structure & Dynamics, 40(8), 3789–3803. https://doi.org/10.1080/07391102.2020.1850364
  • Rolta, R., Yadav, R., Salaria, D., Trivedi, S., Imran, M., Sourirajan, A., Baumler, D. J., & Dev, K. (2021). In silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of COVID-19: An approach to prevent virus assembly. Journal of Biomolecular Structure & Dynamics, 39(18), 7017–7034. https://doi.org/10.1080/07391102.2020.1804457
  • Salaria, D., Rolta, R., Mehta, J., Awofisayo, O., Fadare, O. A., Kaur, B., Kumar, B., Araujo da Costa, R., Chandel, S. R., Kaushik, N., Choi, E. H., & Kaushik, N. K. (2022). Phytoconstituents of traditional Himalayan herbs as potential inhibitors of human papillomavirus (HPV-18) for cervical cancer treatment: An in silico approach. PloS One, 17(3), e0265420. https://doi.org/10.1371/journal.pone.0265420
  • Salaria, D., Rolta, R., Sharma, N., et al. (2020). In Silico and in Vitro Evaluation of the anti-Inflammatory and Antioxidant Potential of Cymbopogon Citratus from North-Western Himalayas. 2020.05.31.124982
  • Sanjuán, R., & Domingo-Calap, P. (2016). Mechanisms of viral mutation. Cellular and Molecular Life Sciences: CMLS, 73(23), 4433–4448. https://doi.org/10.1007/s00018-016-2299-6
  • Seibert, J. B., Amparo, T. R., Almeida, T. C., de Souza, G. H., & dos Santos, O. D. (2023). Phytocompounds as a source for the development of new drugs to treat respiratory viral infections. Studies in Natural Products Chemistry, 77, 187–240. https://doi.org/10.1016/B978-0-323-91294-5.00007-5
  • Senevirathne, A., Jayathilaka, E. H. T. T., Haluwana, D. K., Chathuranga, K., Senevirathne, M., Jeong, J.-S., Kim, T.-W., Lee, J.-S., & De Zoysa, M. (2023). The aqueous leaf extract of the medicinal herb costus speciosus suppresses influenza A H1N1 viral activity under in vitro and in vivo conditions. Viruses, 15(6), 1375. https://doi.org/10.3390/v15061375
  • Shah, T., Xia, K. Y., Shah, Z., & Baloch, Z. (2022). Therapeutic mechanisms and impact of traditional Chinese medicine on COVID-19 and other influenza diseases. Pharmacological Research - Modern Chinese Medicine, 2, 100029. https://doi.org/10.1016/j.prmcm.2021.100029
  • Shalini, K., Guleria, S., Salaria, D., Rolta, R., Fadare, O. A., Mehta, J., Awofisayo, O., Mandyal, P., Shandilya, P., Kaushik, N., Choi, E. H., Chandel, S. R., & Kaushik, N. K. (2023). Antimicrobial potential of phytocompounds of Acorus calamus: In silico approach. Journal of Biomolecular Structure & Dynamics, 1–12. https://doi.org/10.1080/07391102.2023.2209653
  • Shao, W., Li, X., Goraya, M. U., Wang, S., & Chen, J.-L. (2017). Evolution of influenza A virus by mutation and re-assortment. International Journal of Molecular Sciences, 18(8), 1650. https://doi.org/10.3390/ijms18081650
  • Smyk, J. M., Szydłowska, N., Szulc, W., & Majewska, A. (2022). Evolution of influenza viruses-drug resistance, treatment options, and prospects. International Journal of Molecular Sciences, 23(20), 12244. https://doi.org/10.3390/ijms232012244
  • Sonawadekar, C., Kamble, R., Sawant, S., & Joshi, S. (2021). Drug repurposing. In Silico Based Study on Repurposing Phytochemicals on Influenza, 5, 114–120.
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Yang, H., Carney, P. J., Chang, J. C., Guo, Z., Villanueva, J. M., & Stevens, J. (2015). Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins. Virology, 477, 18–31. https://doi.org/10.1016/j.virol.2014.12.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.