96
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Insightful t-SNE guided exploration spotlighting Palbociclib and Ribociclib analogues as novel WEE1 kinase inhibitory candidates

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 01 Nov 2023, Accepted 07 Jan 2024, Published online: 18 Jan 2024

References

  • Abad, E., Graifer, D., & Lyakhovich, A. (2020). DNA damage response and resistance of cancer stem cells. Cancer Letters, 474, 106–117. https://doi.org/10.1016/j.canlet.2020.01.008
  • Ali, R., Alblihy, A., Toss, M. S., Algethami, M., Al Sunni, R., Green, A. R., Rakha, E. A., & Madhusudan, S. (2020). XRCC1 deficient triple negative breast cancers are sensitive to ATR, ATM and Wee1 inhibitor either alone or in combination with olaparib. Therapeutic Advances in Medical Oncology, 12, 1758835920974201. https://doi.org/10.1177/1758835920974201
  • Alli, V. J., Yadav, P., Suresh, V., & Jadav, S. S. (2023). Synthetic and medicinal chemistry approaches toward WEE1 kinase inhibitors and its degraders. ACS Omega, 8(23), 20196–20233. https://doi.org/10.1021/acsomega.3c01558
  • Andronov, M., Fedorov, M. V., & Sosnin, S. (2021). Exploring chemical reaction space with reaction difference fingerprints and parametric t-SNE. ACS Omega, 6(45), 30743–30751. https://doi.org/10.1021/acsomega.1c04778
  • Bajusz, D., Rácz, A., & Héberger, K. (2015). Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? Journal of Cheminformatics, 7(1), 20. https://doi.org/10.1186/s13321-015-0069-3
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., et al. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper Presentation]. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing; New York, NY: Association for Computing Machinery.
  • Cereto-Massagué, A., Ojeda, M. J., Valls, C., Mulero, M., Garcia-Vallvé, S., & Pujadas, G. (2015). Molecular fingerprint similarity search in virtual screening. Methods (San Diego, CA), 71(C), 58–63. https://doi.org/10.1016/j.ymeth.2014.08.005
  • Chandrasekaran, J., Sivakumaresan, Y., Shankar, K., Dickson, M., Laya Saravana Kumar, S., Ramanathan, L., Ahmad, I., & Patel, H. (2023). Broadening the scope of WEE1 inhibitors: Identifying novel drug candidates via computational approaches and drug repurposing. Journal of Biomolecular Structure & Dynamics, 1–11. https://doi.org/10.1080/07391102.2023.2251070
  • Cohen, P. (2002). Protein kinases—the major drug targets of the twenty-first century? Nature Reviews Drug Discovery, 1(4), 309–315. https://doi.org/10.1038/nrd773
  • Dai, Y., & Grant, S. (2010). New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 16(2), 376–383. https://doi.org/10.1158/1078-0432.CCR-09-1029
  • Ertl, P., & Schuffenhauer, A. (2009). Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics, 1(1), 8. https://doi.org/10.1186/1758-2946-1-8
  • Fu, S., Wang, Y., Keyomarsi, K., Meric-Bernstam, F., & Meric-Bernstein, F. (2018). Strategic development of AZD1775, a Wee1 kinase inhibitor, for cancer therapy. Expert Opinion on Investigational Drugs, 27(9), 741–751. https://doi.org/10.1080/13543784.2018.1511700
  • Ghelli Luserna di Rorà, A., Cerchione, C., Martinelli, G., & Simonetti, G. (2020). A WEE1 family business: Regulation of mitosis, cancer progression, and therapeutic target. Journal of Hematology & Oncology, 13(1), 126. https://doi.org/10.1186/s13045-020-00959-2
  • Guha, R. (2013). On exploring structure-activity relationships. Methods in Molecular Biology (Clifton, NJ), 993, 81–94. https://doi.org/10.1007/978-1-62703-342-8_6
  • Ha, D.-H., Min, A., Kim, S., Jang, H., Kim, S. H., Kim, H.-J., Ryu, H. S., Ku, J.-L., Lee, K.-H., & Im, S.-A. (2020). Antitumor effect of a WEE1 inhibitor and potentiation of olaparib sensitivity by DNA damage response modulation in triple-negative breast cancer. Scientific Reports, 10(1), 9930. https://doi.org/10.1038/s41598-020-66018-5
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Hirai, H., Arai, T., Okada, M., Nishibata, T., Kobayashi, M., Sakai, N., Imagaki, K., Ohtani, J., Sakai, T., Yoshizumi, T., Mizuarai, S., Iwasawa, Y., & Kotani, H. (2010). MK-1775, a small molecule Wee1 inhibitor, enhances anti-tumor efficacy of various DNA-damaging agents, including 5-fluorouracil. Cancer Biology & Therapy, 9(7), 514–522. https://doi.org/10.4161/cbt.9.7.11115
  • Ioakimidis, L., Thoukydidis, L., Mirza, A., Naeem, S., & Reynisson, J. (2008). Benchmarking the reliability of QikProp. correlation between experimental and predicted values. QSAR & Combinatorial Science, 27(4), 445–456. https://doi.org/10.1002/qsar.200730051
  • Janssen, A. P. A., Grimm, S. H., Wijdeven, R. H. M., Lenselink, E. B., Neefjes, J., van Boeckel, C. A. A., van Westen, G. J. P., & van der Stelt, M. (2019). Drug discovery maps, a machine learning model that visualizes and predicts kinome-inhibitor interaction landscapes. Journal of Chemical Information and Modeling, 59(3), 1221–1229. https://doi.org/10.1021/acs.jcim.8b00640
  • Landrum, G. (2013). RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum, 8, 31.
  • Li, Z., Pinch, B. J., Olson, C. M., Donovan, K. A., Nowak, R. P., Mills, C. E., Scott, D. A., Doctor, Z. M., Eleuteri, N. A., Chung, M., Sorger, P. K., Fischer, E. S., & Gray, N. S. (2020). Development and characterization of a wee1 kinase degrader. Cell Chemical Biology, 27(1), 57–65.e9. https://doi.org/10.1016/j.chembiol.2019.10.013
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development q settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26.
  • Lipinski, C., & Hopkins, A. (2004). Insight review articles Navigating chemical space for biology and medicine. Nature, 432, 855–861.
  • Matheson, C. J., Backos, D. S., & Reigan, P. (2016). Targeting WEE1 kinase in cancer. Trends in Pharmacological Sciences, 37(10), 872–881. https://doi.org/10.1016/j.tips.2016.06.006
  • Meng, X., Gao, J. Z., Gomendoza, S. M. T., Li, J. W., & Yang, S. (2021). Recent advances of WEE1 inhibitors and statins in cancers with p53 mutations. Frontiers in Medicine, 8, 737951. https://doi.org/10.3389/fmed.2021.737951
  • Pan, T., Qin, Q., Nong, C., Gao, S., Wang, L., Cai, B., Zhang, M., Wu, C., Chen, H., Li, T., Xiong, D., Li, G., Wang, S., & Yan, S. (2021). A novel WEE1 pathway for replication stress responses. Nature Plants, 7(2), 209–218. https://doi.org/10.1038/s41477-021-00855-8
  • Pedregosa Fabianpedregosa, F., Michel, V., Grisel Oliviergrisel, O., Blondel, M., Prettenhofer, P., & Weiss, R. (2011). Scikit-learn: Machine learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot. Journal of Machine Learning Research, 12, 2825–2830.
  • Reymond, J.-L. (2015). The chemical space project. Accounts of Chemical Research, 48(3), 722–730. https://doi.org/10.1021/ar500432k
  • Rogers, D., Brown, R. D., & Hahn, M. (2005). Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. Journal of Biomolecular Screening, 10(7), 682–686. https://doi.org/10.1177/1087057105281365
  • Van Der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.
  • Yang, T., Li, Z., Chen, Y., Feng, D., Wang, G., Fu, Z., Ding, X., Tan, X., Zhao, J., Luo, X., Chen, K., Jiang, H., & Zheng, M. (2021). DrugSpaceX: A large screenable and synthetically tractable database extending drug space. Nucleic Acids Research, 49(D1), D1170–D1178. https://doi.org/10.1093/nar/gkaa920
  • Ye, Q., Ma, J., Wang, P., Wang, C., Sun, M., Zhou, Y., Li, J., & Liu, T. (2023). Discovery of pyrido[4,3-d]pyrimidinone derivatives as novel Wee1 inhibitors. Bioorganic & Medicinal Chemistry, 87, 117312. https://doi.org/10.1016/j.bmc.2023.117312
  • Zhou, B.-B. S., & Elledge, S. J. (2000). The DNA damage response: Putting checkpoints in perspective. Nature, 408(6811), 433–439. https://doi.org/10.1038/35044005
  • Zhu, J.-Y., Cuellar, R. A., Berndt, N., Lee, H. E., Olesen, S. H., Martin, M. P., Jensen, J. T., Georg, G. I., & Schönbrunn, E. (2017). Structural basis of wee kinases functionality and inactivation by diverse small molecule inhibitors. Journal of Medicinal Chemistry, 60(18), 7863–7875. https://doi.org/10.1021/acs.jmedchem.7b00996

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.