327
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing solubility and stability of piperine using β-cyclodextrin derivatives: computational and experimental investigations

, , , , , , , , & show all
Received 14 Jun 2023, Accepted 20 Oct 2023, Published online: 23 Jan 2024

References

  • Alshehri, S., Imam, S. S., Hussain, A., & Altamimi, M. A. (2020). Formulation of piperine ternary inclusion complex using β CD and HPMC: Physicochemical characterization, molecular docking, and antimicrobial testing. Processes, 8(11), 1450. https://doi.org/10.3390/pr8111450
  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins: Structure, Function, and Bioinformatics, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Annaji, M., Mita, N., Poudel, I., Wang, Q., Tipton, B., Babu, R. J., & Lyman, C. C. (2023). Inclusion complex of clomiphene citrate with hydroxypropyl-beta-cyclodextrin for intravenous injection: Formulation and stability studies. AAPS PharmSciTech, 24(1), 48. https://doi.org/10.1208/s12249-023-02513-y
  • Chen, W., Chang, C. E., & Gilson, M. K. (2004). Calculation of cyclodextrin binding affinities: Energy, entropy, and implications for drug design. Biophysical Journal, 87(5), 3035–3049. https://doi.org/10.1529/biophysj.104.049494
  • Christoforides, E., Andreou, A., Papaioannou, A., & Bethanis, K. (2022). Structural studies of piperine inclusion complexes in native and derivative beta-cyclodextrins. Biomolecules, 12(12), 1762. https://doi.org/10.3390/biom12121762
  • Deshmukh, A. S., Tiwari, K. J., & Mahajan, V. R. (2017). Solubility enhancement techniques for poorly water-soluble drugs. International Journal of Pharmaceutical Sciences and Nanotechnology, 10(3), 3701–3708. https://doi.org/10.37285/ijpsn.2017.10.3.1
  • Ezawa, T., Inoue, Y., Tunvichien, S., Suzuki, R., & Kanamoto, I. (2016). Changes in the physicochemical properties of piperine/beta-cyclodextrin due to the formation of inclusion complexes. International Journal of Medicinal Chemistry, 2016, 8723139. https://doi.org/10.1155/2016/8723139
  • Fermeglia, M., Ferrone, M., Lodi, A., & Pricl, S. (2003). Host-guest inclusion complexes between anticancer drugs and beta-cyclodextrin: Computational studies. Carbohydrate Polymers, 53(1), 15–44. https://doi.org/10.1016/S0144-8617(03)00011-0
  • Fukuda, M., Miller, D. A., Peppas, N. A., & McGinity, J. W. (2008). Influence of sulfobutyl ether beta-cyclodextrin (Captisol) on the dissolution properties of a poorly soluble drug from extrudates prepared by hot-melt extrusion. International Journal of Pharmaceutics, 350(1-2), 188–196. https://doi.org/10.1016/j.ijpharm.2007.08.038
  • Gaikwad, S., & Srivastava, S. K. (2021). Role of phytochemicals in perturbation of redox homeostasis in cancer. Antioxidants (Basel, Switzerland), 10(1), 83. https://doi.org/10.3390/antiox10010083
  • Gilson, M. K., & Honig, B. (1988). Calculation of the total electrostatic energy of a macromolecular system: Solvation energies, binding energies, and conformational analysis. Proteins, 4(1), 7–18. https://doi.org/10.1002/prot.340040104
  • Giordano, F., Novak, C., & Moyano, J. R. (2001). Thermal analysis of cyclodextrins and their inclusion compounds. Thermochimica Acta, 380(2), 123–151. https://doi.org/10.1016/S0040-6031(01)00665-7
  • Hashimoto, K., Yaoi, T., Koshiba, H., Yoshida, T., Maoka, T., Fujiwara, Y., Yamamoto, Y., & Mori, K. (1996). Photochemical isomerization of piperine, a pungent constituent in pepper. Food Science and Technology International, Tokyo, 2(1), 24–29. https://doi.org/10.3136/fsti9596t9798.2.24
  • Higuchi, T. (1965). Phase solubility techniques. Advances in Analytical Chemistry and Instrumentation, 4, 117–212. https://cir.nii.ac.jp/crid/1570009750159642368
  • Hu, L., Zhang, H., Song, W., Gu, D., & Hu, Q. (2012). Investigation of inclusion complex of cilnidipine with hydroxypropyl-beta-cyclodextrin. Carbohydrate Polymers, 90(4), 1719–1724. https://doi.org/10.1016/j.carbpol.2012.07.057
  • Jadhav, P. (2021). Piperine-hydroxy acid-cyclodextrin inclusion complexes; physicochemical, computational, and proton nuclear magnetic resonance spectroscopy studies: PART I. Asian Journal of Pharmaceutics, 15(1)
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Jullian, C. (2009). Improvement of galangin solubility using native and derivative cyclodextrins: An UV-Vis and NMR study. Journal of the Chilean Chemical Society, 54(2), 201–203. https://doi.org/10.4067/S0717-97072009000200025
  • Kerdpol, K., Kicuntod, J., Wolschann, P., Mori, S., Rungnim, C., Kunaseth, M., Okumura, H., Kungwan, N., & Rungrotmongkol, T. (2019). Cavity closure of 2-hydroxypropyl-beta-cyclodextrin: Replica exchange molecular dynamics simulations. Polymers, 11(1), 145. https://doi.org/10.3390/polym11010145
  • Kerdpol, K., Nutho, B., Krusong, K., Poo-Arporn, R. P., Rungrotmongkol, T., & Hannongbua, S. (2021). Encapsulation of α-tocopherol in large-ring cyclodextrin containing 26 α-D-glucopyranose units: A molecular dynamics study. Journal of Molecular Liquids, 339, 116802. https://doi.org/10.1016/j.molliq.2021.116802
  • Kirschner, K. N., Yongye, A. B., Tschampel, S. M., González-Outeiriño, J., Daniels, C. R., Foley, B. L., & Woods, R. J. (2008). GLYCAM06: A generalizable biomolecular force field. Carbohydrates. Journal of Computational Chemistry, 29(4), 622–655. https://doi.org/10.1002/jcc.20820
  • Klaewkla, M., Charoenwongpaiboon, T., & Mahalapbutr, P. (2021). Molecular basis of the new COVID-19 target neuropilin-1 in complex with SARS-CoV-2 S1 C-end rule peptide and small-molecule antagonists. Journal of Molecular Liquids, 335, 116537. https://doi.org/10.1016/j.molliq.2021.116537
  • Kompantseva, E. V., Gavrilin, M. V., & Ushakova, L. S. (1196). β-Cyclodextrin derivatives and their applications in pharmacology (a review). Pharmaceutical Chemistry Journal, 30(4), 258–262. https://doi.org/10.1007/BF02218773
  • Laza-Knoerr, A. L., Gref, R., & Couvreur, P. (2010). Cyclodextrins for drug delivery. Journal of Drug Targeting, 18(9), 645–656. https://doi.org/10.3109/10611861003622552
  • Li, P., Song, J., Ni, X., Guo, Q., Wen, H., Zhou, Q., Shen, Y., Huang, Y., Qiu, P., Lin, S., & Hu, H. (2016). Comparison in toxicity and solubilizing capacity of hydroxypropyl-beta-cyclodextrin with different degree of substitution. International Journal of Pharmaceutics, 513(1-2), 347–356. https://doi.org/10.1016/j.ijpharm.2016.09.036
  • Liu, H., Yang, J., Li, L., Shi, W., Yuan, X., & Wu, L. (2016). The natural occurring compounds targeting endoplasmic reticulum stress. Evidence-Based Complementary and Alternative Medicine, 2016, 7831282–7831213. https://doi.org/10.1155/2016/7831282
  • Loftsson, T., & Brewster, M. E. (1996). Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. Journal of Pharmaceutical Sciences, 85(10), 1017–1025. https://doi.org/10.1021/js950534b
  • Loftsson, T., & Duchêne, D. (2007). Cyclodextrins and their pharmaceutical applications. International Journal of Pharmaceutics, 329(1-2), 1–11. https://doi.org/10.1016/j.ijpharm.2006.10.044
  • Luke, D. R., Tomaszewski, K., Damle, B., & Schlamm, H. T. (2010). Review of the basic and clinical pharmacology of sulfobutylether-beta-cyclodextrin (SBECD). Journal of Pharmaceutical Sciences, 99(8), 3291–3301. https://doi.org/10.1002/jps.22109
  • Mahalapbutr, P., Nutho, B., Wolschann, P., Chavasiri, W., Kungwan, N., & Rungrotmongkol, T. (2018). Molecular insights into inclusion complexes of mansonone E and H enantiomers with various beta-cyclodextrins. Journal of Molecular Graphics & Modelling, 79, 72–80. https://doi.org/10.1016/j.jmgm.2017.11.006
  • Mahalapbutr, P., Thitinanthavet, K., Kedkham, T., Nguyen, H., Theu, L. T h., Dokmaisrijan, S., Huynh, L., Kungwan, N., & Rungrotmongkol, T. (2019). A theoretical study on the molecular encapsulation of luteolin and pinocembrin with various derivatized beta-cyclodextrins. Journal of Molecular Structure, 1180, 480–490. https://doi.org/10.1016/j.molstruc.2018.12.025
  • Mitra, S., Anand, U., Jha, N. K., Shekhawat, M. S., Saha, S. C., Nongdam, P., Rengasamy, K. R. R., Proćków, J., & Dey, A. (2021). Anticancer applications and pharmacological properties of piperidine and piperine: A comprehensive review on molecular mechanisms and therapeutic perspectives. Frontiers in Pharmacology, 12, 772418. https://doi.org/10.3389/fphar.2021.772418
  • Mj Frisch, G. T., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., & Nakatsuji, H. (2016). Gaussian09. Gaussian Inc.
  • Nagase, Y., Hirata, M., Arima, H., Tajiri, S., Nishimoto, Y., Hirayama, F., Irie, T., & Uekama, K. (2002). Protective effect of sulfobutyl ether beta-cyclodextrin on DY-9760e-induced hemolysis in vitro. Journal of Pharmaceutical Sciences, 91(11), 2382–2389. https://doi.org/10.1002/jps.10236
  • Raffaini, G., & Ganazzoli, F. (2020). Understanding surface interaction and inclusion complexes between piroxicam and native or crosslinked beta-cyclodextrins: The role of drug concentration. Molecules (Basel, Switzerland), 25(12), 2848. https://doi.org/10.3390/molecules25122848
  • Rather, R. A., & Bhagat, M. (2018). Cancer chemoprevention and piperine: molecular mechanisms and therapeutic opportunities. Frontiers in Cell and Developmental Biology, 6, 10. https://doi.org/10.3389/fcell.2018.00010
  • Rungnim, C., Phunpee, S., Kunaseth, M., Namuangruk, S., Rungsardthong, K., Rungrotmongkol, T., & Ruktanonchai, U. (2015). Co-solvation effect on the binding mode of the alpha-mangostin/beta-cyclodextrin inclusion complex. Beilstein Journal of Organic Chemistry, 11, 2306–2317. https://doi.org/10.3762/bjoc.11.251
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug solubility: Importance and enhancement techniques. International Scholarly Research Notices, 2012, 1–10. https://doi.org/10.5402/2012/195727
  • Shanmuga Priya, A., Sivakamavalli, J., Vaseeharan, B., & Stalin, T. (2013). Improvement on dissolution rate of inclusion complex of rifabutin drug with beta-cyclodextrin. International Journal of Biological Macromolecules, 62, 472–480. https://doi.org/10.1016/j.ijbiomac.2013.09.006
  • Shelley, H., Grant, M., Smith, F. T., Abarca, E. M., & Jayachandra Babu, R. (2018). Improved ocular delivery of nepafenac by cyclodextrin complexation. AAPS PharmSciTech, 19(6), 2554–2563. https://doi.org/10.1208/s12249-018-1094-0
  • Soe, H. M. H., Chamni, S., Mahalapbutr, P., Kongtaworn, N., Rungrotmongkol, T., & Jansook, P. (2020). The investigation of binary and ternary sulfobutylether-beta-cyclodextrin inclusion complexes with asiaticoside in solution and in solid state. Carbohydrate Research, 498, 108190. https://doi.org/10.1016/j.carres.2020.108190
  • Song, L. T., Jiang, X. Y., Tang, K. W., & Miao, J. B. (2011). Study on inclusion interaction of ibuprofen with B-cyclodextrin derivatives. Latin American Applied Research, 41(2), 147–151.
  • Stella, V. J., Rao, V. M., Zannou, E. A., & Zia, V. (1999). Mechanisms of drug release from cyclodextrin complexes. Advanced Drug Delivery Reviews, 36(1), 3–16. https://doi.org/10.1016/s0169-409x(98)00052-0
  • Stojanović-Radić, Z., Pejčić, M., Dimitrijević, M., Aleksić, A., V. Anil Kumar, N., Salehi, B., C. Cho, W., & Sharifi-Rad, J. (2019). Piperine-A major principle of black pepper: A review of its bioactivity and studies. Applied Sciences, 9(20), 4270. https://doi.org/10.3390/app9204270
  • Szejtli, J. (2010). ChemInform Abstract: Introduction and general overview of cyclodextrin Chemistry. ChemInform, 29(39), 1743-1754. https://doi.org/10.1002/chin.199839312
  • Tongiani, S., Ozeki, T., & Stella, V. J. (2009). Sulfobutyl ether-alkyl ether mixed cyclodextrin derivatives with enhanced inclusion ability. Journal of Pharmaceutical Sciences, 98(12), 4769–4780. https://doi.org/10.1002/jps.21791
  • Tsao, J.-Y., Wu, C.-P., Tsai, H.-H., Peng, K.-C., Lin, P.-Y., Su, S.-Y., Chen, L.-D., Tsai, F.-J., & Tsai, Y. (2011). Effect of hydroxypropyl-β-cyclodextrin complexation on the aqueous solubility, structure, thermal stability, antioxidant activity, and tyrosinase inhibition of paeonol. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 72(3-4), 405–411. https://doi.org/10.1007/s10847-011-0003-x
  • Veiga, M. D., Díaz, P. J., & Ahsan, F. (1998). Interactions of griseofulvin with cyclodextrins in solid binary systems. Journal of Pharmaceutical Sciences, 87(7), 891–900. https://doi.org/10.1021/js970233x
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wattanathorn, J., Chonpathompikunlert, P., Muchimapura, S., Priprem, A., & Tankamnerdthai, O. (2008). Piperine, the potential functional food for mood and cognitive disorders. Food and Chemical Toxicology, 46(9), 3106–3110. https://doi.org/10.1016/j.fct.2008.06.014
  • York, D. M., Darden, T. A., & Pedersen, L. G. (1993). The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods. Journal of Chemical Physics, 99(10), 8345–8348. https://doi.org/10.1063/1.465608

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.