121
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural insights into the interactions of repositioning and known drugs for Alzheimer’s disease with hen egg white lysozyme by MM-GBSA

, , , , , , , , , , & show all
Received 07 Jun 2023, Accepted 06 Jan 2024, Published online: 18 Jan 2024

References

  • Arnaudov, L. N., & de Vries, R. (2015). Thermally induced fibrillar aggregation of hen egg white lysozyme. Biophysical Journal, 88(1), 515–526. https://doi.org/10.1529/biophysj.104.048819
  • Athar, T., Al Balushi, K., & Khan, S. A. (2021). Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Molecular Biology Reports, 48(7), 5629–5645. https://doi.org/10.1007/s11033-021-06512-9
  • Bahramikia, S., Yazdanparast, R., & Gheysarzadeh, A. (2012). Syntheses and structure-activity relationships of seven manganese-salen derivatives as anti-amyloidogenic and fibril-destabilizing agents against hen egg-white lysozyme aggregation. Chemical Biology & Drug Design, 80(2), 227–236. https://doi.org/10.1111/j.1747-0285.2012.01391.x
  • Ban, D. K., Somu, P., & Paul, S. (2018). Graphene oxide quantum dot alters amyloidogenicity of hen egg white lysozyme via modulation of protein surface character. Langmuir: The ACS Journal of Surfaces and Colloids, 34(50), 15283–15292. https://doi.org/10.1021/acs.langmuir.8b02674
  • Belwal, V. K., Datta, D., & Chaudhary, N. (2020). The β-turn-supporting motif in the polyglutamine binding peptide QBP1 is essential for inhibiting huntingtin aggregation. FEBS Letters, 594(17), 2894–2903. https://doi.org/10.1002/1873-3468.13873
  • Borana, M. S., Mishra, P., Pissurlenkar, R. R. S., Hosur, R. V., & Ahmad, B. (2014). Curcumin and kaempferol prevent lysozyme fibril formation by modulating aggregation kinetic parameters. Biochimica et Biophysica Acta, 1844(3), 670–680. https://doi.org/10.1016/j.bbapap.2014.01.009
  • Bugg, C. W., Isas, J. M., Fischer, T., Patterson, P. H., & Langen, R. (2012). Structural features and domain organization of huntingtin fibrils. The Journal of Biological Chemistry, 287(38), 31739–31746. https://doi.org/10.1074/jbc.M112.353839
  • Chiti, F., & Dobson, C. M. (2006). Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry, 75(1), 333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901
  • Chowdhury, S., & Kumar, S. (2021). Bioactive phytocompounds: anti-amyloidogenic effects against hen egg-white lysozyme aggregation. The Protein Journal, 40(1), 78–86. https://doi.org/10.1007/s10930-020-09946-5
  • Crystallography: Protein data bank. Nature New Biology, 233(42), 223–223. https://doi.org/10.1038/newbio233223b0
  • Cui, L., Wang, S., Zhang, J., Wang, M., Gao, Y., Bai, L., Zhang, H., Ma, G., & Ba, X. (2019). Effect of curcumin derivatives on hen egg white lysozyme amyloid fibrillation and their interaction study by spectroscopic methods. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 223, 117365. https://doi.org/10.1016/j.saa.2019.117365
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In J. Hempel, C. Williams, & C. Hong (Eds.), Chemical biology. Methods in molecular biology (Vol. 1263, pp. 243–250). Humana Press. https://doi.org/10.1007/978-1-4939-2269-7_19]
  • Dileep, K. V., Nithiyanandan, K., & Remya, C. (2018). Binding of acarbose, an anti-diabetic drug to lysozyme: A combined structural and thermodynamic study. Journal of Biomolecular Structure & Dynamics, 36(13), 3354–3361. https://doi.org/10.1080/07391102.2017.1388283
  • Dobson, C. M. (2003). Protein folding and misfolding. Nature, 426(6968), 884–890. https://doi.org/10.1038/nature02261
  • Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., & Baker, N. A. (2007). PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research, 35(Web Server issue), W522–W525. https://doi.org/10.1093/nar/gkm276
  • Faramarzian, M., Bahramikia, S., & Dehghan Shasaltaneh, M. (2020). In vitro investigation of the effect of mesalazine on amyloid fibril formation of hen egg-white lysozyme and defibrillation lysozyme fibrils. European Journal of Pharmacology, 874, 173011. https://doi.org/10.1016/j.ejphar.2020.173011
  • Ghosh, A., Panda, P., Halder, A. K., & Cordeiro, M. N. D. S. (2022). In silico characterization of aryl benzoyl hydrazide derivatives as potential inhibitors of RdRp enzyme of H5N1 influenza virus. Frontiers in Pharmacology, 13, 1004255. https://doi.org/10.3389/fphar.2022.1004255
  • Girych, M., Gorbenko, G., Maliyov, I., Trusova, V., Mizuguchi, C., Saito, H., & Kinnunen, P. (2016). Combined thioflavin T-Congo red fluorescence assay for amyloid fibril detection. Methods and Applications in Fluorescence, 4(3), 034010. https://doi.org/10.1088/2050-6120/4/3/034010
  • Halder, A. K., & Cordeiro, M. N. D. S. (2021). Multi-target in silico prediction of inhibitors for mitogen-activated protein kinase-interacting kinases. Biomolecules, 11(11), 1670. https://doi.org/10.3390/biom11111670
  • Halder, A. K., & Honarparvar, B. (2019). Molecular alteration in drug susceptibility against subtype B and C-SA HIV-1 proteases: MD study. Structural Chemistry, 30(5), 1715–1727. https://doi.org/10.1007/s11224-019-01305-0
  • Harada, A., Azakami, H., & Kato, A. (2008). Amyloid fibril formation of hen lysozyme depends on the instability of the C-helix (88-99). Bioscience, Biotechnology, and Biochemistry, 72(6), 1523–1530. https://doi.org/10.1271/bbb.80032
  • He, J., Wang, Y., Chang, A. K., Xu, L., Wang, N., Chong, X., Li, H., Zhang, B., Jones, G. W., & Song, Y. (2014). Myricetin prevents fibrillogenesis of hen egg white lysozyme. Journal of Agricultural and Food Chemistry, 62(39), 9442–9449. https://doi.org/10.1021/jf5025449
  • Howlett, G. J., Ryan, T. M., & Griffin, M. D. W. (2019). Lipid-apolipoprotein interactions in amyloid fibril formation and relevance to atherosclerosis. Biochimica et Biophysica Acta. Proteins and Proteomics, 1867(5), 502–507. https://doi.org/10.1016/j.bbapap.2018.08.010
  • Hudson, S. A., Ecroyd, H., Kee, T. W., & Carver, J. A. (2009). The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. The FEBS Journal, 276(20), 5960–5972. https://doi.org/10.1111/j.1742-4658.2009.07307.x
  • Jokar, S., Erfani, M., Bavi, O., Khazaei, S., Sharifzadeh, M., Hajiramezanali, M., Beiki, D., & Shamloo, A. (2020). Design of peptide-based inhibitor agent against amyloid-β aggregation: Molecular docking, synthesis and in vitro evaluation. Bioorganic Chemistry, 102, 104050. https://doi.org/10.1016/j.bioorg.2020.104050
  • Joshi, V., Shivach, T., Yadav, N., & Rathore, A. S. (2014). Circular dichroism spectroscopy as a tool for monitoring aggregation in monoclonal antibody therapeutics. Analytical Chemistry, 86(23), 11606–11613. https://doi.org/10.1021/ac503140j
  • Knorz, A. L., & Quante, A. (2022). Alzheimer’s disease: Efficacy of mono- and combination therapy. A systematic review. Journal of Geriatric Psychiatry and Neurology, 35(4), 475–486. https://doi.org/10.1177/08919887211044746
  • Lagunin, A. A., Ivanov, S. M., Gloriozova, T. A., Pogodin, P. V., Filimonov, D. A., Kumar, S., & Goel, R. K. (2020). Combined network pharmacology and virtual reverse pharmacology approaches for identification of potential targets to treat vascular dementia. Scientific Reports, 10(1), 257. https://doi.org/10.1038/s41598-019-57199-9
  • Lim, K., Nadarajah, A., Forsythe, E. L., & Pusey, M. L. (1998). Locations of bromide ions in tetragonal lysozyme crystals. Acta Crystallographica. Section D, Biological Crystallography, 54(Pt 5), 899–904. https://doi.org/10.1107/S0907444998002844
  • Liu, L., Zhu, Y., Fu, P., & Yang, J. (2022). A network pharmacology based research on the mechanism of donepezil in treating Alzheimer’s disease. Frontiers in Aging Neuroscience, 14, 822480. https://doi.org/10.3389/fnagi.2022.822480
  • Liu, X., & Wang, Y. (2023). Elucidating the molecular targets and mechanisms of chlorogenic acid against Alzheimer’s disease via network pharmacology and molecular docking. Letters in Drug Design & Discovery, 20(9), 1329–1342. https://doi.org/10.2174/1570180819666220619125742
  • Ma, X., Zhao, Y., Yang, T., Gong, N., Chen, X., Liu, G., & Xiao, J. (2022). Integration of network pharmacology and molecular docking to explore the molecular mechanism of Cordycepin in the treatment of Alzheimer’s disease. Frontiers in Aging Neuroscience, 14, 1058780. https://doi.org/10.3389/fnagi.2022.1058780
  • Mahdavimehr, M., Meratan, A. A., Ghobeh, M., Ghasemi, A., Saboury, A. A., & Nemat-Gorgani, M. (2017). Inhibition of HEWL fibril formation by taxifolin: Mechanism of action. PloS One, 12(11), e0187841. https://doi.org/10.1371/journal.pone.0187841
  • Malcolm, B. A., Rosenberg, S., Corey, M. J., Allen, J. S., de Baetselier, A., & Kirsch, J. F. (1989). Site-directed mutagenesis of the catalytic residues Asp-52 and Glu-35 of chicken egg white lysozyme. Proceedings of the National Academy of Sciences of the United States of America, 86(1), 133–137. https://doi.org/10.1073/pnas.86.1.13
  • Martiz, R. M., Patil, S. M., Abdulaziz, M., Babalghith, A., Al-Areefi, M., Al-Ghorbani, M., Mallappa Kumar, J., Prasad, A., Mysore Nagalingaswamy, N. P., & Ramu, R. (2022). Defining the role of isoeugenol from ocimum tenuiflorum against diabetes mellitus-linked Alzheimer’s disease through network pharmacology and computational methods. Molecules (Basel, Switzerland), 27(8), 2398. https://doi.org/10.3390/molecules27082398
  • Melchor, M.-H., Susana, F.-G., Francisco, G.-S., Hiram I, B., Norma, R.-F., Jorge A, L.-R., Perla Y, L.-C., & Gustavo, B.-I. (2018). Fullerenemalonates inhibit amyloid beta aggregation, in vitro and in silico evaluation. RSC Advances, 8(69), 39667–39677. https://doi.org/10.1039/C8RA07643J
  • Micsonai, A., Bulyáki, É., & Kardos, J. (2021). BeStSel: From secondary structure analysis to protein fold prediction by circular dichroism spectroscopy. In Y. W. Chen & C P. B. Yiu (Eds.), Structural genomics. Methods in molecular biology (Vol. 2199, pp. 175–189). Springer. https://doi.org/10.1007/978-1-0716-0892-0_11
  • Micsonai, A., Moussong, É., Wien, F., Boros, E., Vadászi, H., Murvai, N., Lee, Y.-H., Molnár, T., Réfrégiers, M., Goto, Y., Tantos, Á., & Kardos, J. (2022). BeStSel: Webserver for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Research, 50(W1), W90–W98. https://doi.org/10.1093/nar/gkac345
  • Mishra, P., Basak, S., Mukherjee, A., & Basu, A. (2022). Design and study of in silico binding dynamics of certain isoxazole bearing leads against Aβ-42 and BACE-1 loop in protein fibrillation. Letters in Drug Design & Discovery, 19(3), 192–213. https://doi.org/10.2174/1570180818666210813120444
  • Mishra, P., Biswas, S., Baur, S., Basak, S., Mukherjee, A., & Basu, A. (2022). Development of pyrazole harbouring novel leads against β-amyloid protein fibrillation by in silico drug design. Journal of Computational Biophysics and Chemistry, 21(05), 541–553. https://doi.org/10.1142/S2737416522500193
  • Mohammadi, F., Moeeni, M., Mahmudian, A., & Hassani, L. (2018). Inhibition of amyloid fibrillation of lysozyme by bisdemethoxycurcumin and diacetylbisdemethoxycurcumin. Biophysical Chemistry, 235, 56–65. https://doi.org/10.1016/j.bpc.2018.02.005
  • Morshedi, D., Rezaei-Ghaleh, N., Ebrahim-Habibi, A., Ahmadian, S., & Nemat-Gorgani, M. (2007). Inhibition of amyloid fibrillation of lysozyme by indole derivatives-possible mechanism of action. The FEBS Journal, 274(24), 6415–6425. https://doi.org/10.1111/j.1742-4658.2007.06158.x
  • Necula, M., Kayed, R., Milton, S., & Glabe, C. G. (2007). Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. The Journal of Biological Chemistry, 282(14), 10311–10324. https://doi.org/10.1074/jbc.M608207200
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Ogata, M., Umemoto, N., Ohnuma, T., Numata, T., Suzuki, A., Usui, T., & Fukamizo, T. (2013). A novel transition-state analogue for lysozyme, 4-O-β-tri-N-acetylchitotriosyl moranoline, provided evidence supporting the covalent glycosyl-enzyme intermediate. The Journal of Biological Chemistry, 288(9), 6072–6082. https://doi.org/10.1074/jbc.M112.439281
  • Ose, T., Kuroki, K., Matsushima, M., Maenaka, K., & Kumagai, I. (2009). Importance of the hydrogen bonding network including Asp52 for catalysis, as revealed by Asn59 mutant hen egg-white lysozymes. Journal of Biochemistry, 146(5), 651–657. https://doi.org/10.1093/jb/mvp110
  • Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., III, DeBolt, S., Ferguson, D., Seibel, G., & Kollman, P. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91(1–3), 1–41. https://doi.org/10.1016/0010-4655(95)00041-D
  • Pei, H., Zeng, J., Chen, W., He, Z., & Du, R. (2022). Network pharmacology and molecular docking integrated strategy to investigate the pharmacological mechanism of palmatine in Alzheimer’s disease. Journal of Biochemical and Molecular Toxicology, 36(11), e23200. https://doi.org/10.1002/jbt.23200
  • Pepys, M. B., Hawkins, P. N., Booth, D. R., Vigushin, D. M., Tennent, G. A., Soutar, A. K., Totty, N., Nguyen, O., Blake, C. C., & Terry, C. J. (1993). Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature, 362(6420), 553–557. https://doi.org/10.1038/362553a0
  • Prabhu, M. P. T., & Sarkar, N. (2022). Inhibitory effects of carbon quantum dots towards hen egg white lysozyme amyloidogenesis through formation of a stable protein complex. Biophysical Chemistry, 280, 106714. https://doi.org/10.1016/j.bpc.2021.106714
  • Qi, P., Li, J., Gao, S., Yuan, Y., Sun, Y., Liu, N., Li, Y., Wang, G., Chen, L., & Shi, J. (2020). Network pharmacology-based and experimental identification of the effects of quercetin on Alzheimer’s disease. Frontiers in Aging Neuroscience, 12, 589588. https://doi.org/10.3389/fnagi.2020.589588
  • Saeedi, M., & Mehranfar, F. (2022). Challenges and approaches of drugs such as memantine, donepezil, rivastigmine, and aducanumab in the treatment, control and management of Alzheimer’s disease. Recent Patents on Biotechnology, 16(2), 102–121. https://doi.org/10.2174/1872208316666220302115901
  • Savva, K., Zachariou, M., Bourdakou, M. M., Dietis, N., & Spyrou, G. M. (2022). Network-based stage-specific drug repurposing for Alzheimer’s disease. Computational and Structural Biotechnology Journal, 20, 1427–1438. https://doi.org/10.1016/j.csbj.2022.03.013
  • Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., & Case, D. A. (1998). Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate − DNA helices. Journal of the American Chemical Society, 120(37), 9401–9409. https://doi.org/10.1021/ja981844+
  • Wang, K., Yang, R., Chen, T.-T., Qin, M.-R., Wang, P., & Kong, M.-W. (2022). Therapeutic mechanism of kai xin san on Alzheimer’s disease based on network pharmacology and experimental validation. Chinese Journal of Integrative Medicine, 29(5), 413–423. https://doi.org/10.1007/s11655-022-3589-5
  • Wu, X., Zheng, X., Tang, H., Zhao, L., He, C., Zou, Y., Song, X., Li, L., Yin, Z., & Ye, G. (2022). A network pharmacology approach to identify the mechanisms and molecular targets of curcumin against Alzheimer disease. Medicine, 101(34), e30194. https://doi.org/10.1097/MD.0000000000030194
  • Xiao, Q.-Y., Ye, T.-Y., Wang, X.-L., Han, L., Wang, T.-X., Qi, D.-M., Cheng, X.-R., & Wang, S.-Q. (2021). A network pharmacology-based study on key pharmacological pathways and targets of Qi Fu Yin acting on Alzheimer’s disease. Experimental Gerontology, 149, 111336. https://doi.org/10.1016/j.exger.2021.111336
  • Yi, P., Zhang, Z., Huang, S., Huang, J., Peng, W., & Yang, J. (2020). Integrated meta-analysis, network pharmacology, and molecular docking to investigate the efficacy and potential pharmacological mechanism of Kai-Xin-San on Alzheimer’s disease. Pharmaceutical Biology, 58(1), 932–943. https://doi.org/10.1080/13880209.2020.1817103
  • You, J.-S., Li, C.-Y., Chen, W., Wu, X.-L., Huang, L.-J., Li, R.-K., Gao, F., Zhang, M.-Y., Liu, H.-L., & Qu, W.-L. (2020). A network pharmacology-based study on Alzheimer disease prevention and treatment of Qiong Yu Gao. BioData Mining, 13(1), 2. https://doi.org/10.1186/s13040-020-00212-z
  • Zeng, P., Fang, M., Zhao, H., & Guo, J. (2021). A network pharmacology approach to uncover the key ingredients in Ginkgo Folium and their anti-Alzheimer’s disease mechanisms. Aging, 13(14), 18993–19012. https://doi.org/10.18632/aging.203348
  • Zeng, Q., Li, L., Siu, W., Jin, Y., Cao, M., Li, W., Chen, J., Cong, W., Ma, M., Chen, K., & Wu, Z. (2019). A combined molecular biology and network pharmacology approach to investigate the multi-target mechanisms of Chaihu Shugan San on Alzheimer’s disease. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 120, 109370. https://doi.org/10.1016/j.biopha.2019.109370
  • Zhang, M., Schmitt-Ulms, G., Sato, C., Xi, Z., Zhang, Y., Zhou, Y., St George-Hyslop, P., & Rogaeva, E. (2016). Drug repositioning for Alzheimer’s disease based on systematic 'omics’ data mining. PloS One, 11(12), e0168812. https://doi.org/10.1371/journal.pone.0168812
  • Zhang, W., Lv, M., Shi, Y., Mu, Y., Yao, Z., & Yang, Z. (2021). Network Pharmacology-Based Study of the Underlying Mechanisms of Huangqi Sijunzi Decoction for Alzheimer’s Disease. Evidence-Based Complementary and Alternative Medicine: ECAM, 2021, 6480381. https://doi.org/10.1155/2021/6480381
  • Zheng, Y., Gao, Y., Chang, Y., Sun, C., & Fang, Y. (2023). Concentration-regulated fibrillation of soy protein: Structure and in vitro digestion. Journal of Agricultural and Food Chemistry, 71(29), 11170–11179. https://doi.org/10.1021/acs.jafc.3c02206

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.