118
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of a highly sensitive fluorescent probe using Delonix regia (Gulmohar) tree pod shell for precise sarcosine detection in human urine samples: advancing prostate cancer diagnosis

, , , , , , , & ORCID Icon show all
Received 17 Oct 2023, Accepted 10 Jan 2024, Published online: 23 Jan 2024

References

  • Abbas, M., Parvatheeswara Rao, B., Islam, M., Kim, K., Naga, S., Takahashi, M., & Kim, C. (2014). Size-controlled high magnetization cofe2o4 nanospheres and nanocubes using rapid one-pot sonochemical technique. Ceramics International, 40(2), 3269–3276. https://doi.org/10.1016/j.ceramint.2013.09.109
  • Betal, S., Dutta, M., Cotica, L., Bhalla, A., & Guo, R. (2015). Batio3 coated cofe2o4–core-shell magnetoelectric nanoparticles (CSMEN) characterization. Integrated Ferroelectrics, 166(1), 225–231. https://doi.org/10.1080/10584587.2015.1092653
  • Chen, Y., Xie, S., Li, L., Fan, J., Li, Q., Min, Y., & Xu, Q. (2021). Highly accessible sites of fe-n on biomass-derived n, p co-doped hierarchical porous carbon for oxygen reduction reaction. Journal of Nanoparticle Research, 23(3), 1–14. https://doi.org/10.1007/s11051-021-05176-7
  • Dong, Y., Pang, H., Yang, H. B., Guo, C., Shao, J., Chi, Y., Li, C. M., & Yu, T. (2013). Carbon‐based dots co‐doped with nitrogen and sulfur for high quantum yield and excitation‐independent emission. Angewandte Chemie, 125(30), 7954–7958. https://doi.org/10.1002/ange.201301114
  • Dyaa, A., Soliman, H., Abdelrazak, A., Samra, B. N., Khojah, E., Ahmed, A. F., El-Esawi, M. A., & Elsayed, A. (2022). Optimization of carotenoids production from rhodotorula sp. Strain atl72 for enhancing its biotechnological applications. Journal of Fungi, 8(2), 160. https://doi.org/10.3390/jof8020160
  • Fang, J., Zhuo, S., & Zhu, C. (2019). Fluorescent sensing platform for the detection of p-nitrophenol based on cu-doped carbon dots. Optical Materials, 97, 109396. https://doi.org/10.1016/j.optmat.2019.109396
  • Gandaglia, G., Leni, R., Bray, F., Fleshner, N., Freedland, S. J., Kibel, A., Stattin, P., Van Poppel, H., & La Vecchia, C. (2021). Epidemiology and prevention of prostate cancer. European Urology Oncology, 4(6), 877–892. https://doi.org/10.1016/j.euo.2021.09.006
  • Girase, K. (2013). Effect of cobalt doping on ft-ir, raman spectra and thermal stability of lead iodate crystals.
  • Heger, Z., Merlos Rodrigo, M. A., Michalek, P., Polanska, H., Masarik, M., Vit, V., Plevova, M., Pacik, D., Eckschlager, T., Stiborova, M., & Adam, V. (2016). Sarcosine up-regulates expression of genes involved in cell cycle progression of metastatic models of prostate cancer. PloS One, 11(11), e0165830. https://doi.org/10.1371/journal.pone.0165830
  • Hu, P., Long, M., Bai, X., Wang, C., Cai, C., Fu, J., Zhou, B., & Zhou, Y. (2017). Monolithic cobalt-doped carbon aerogel for efficient catalytic activation of peroxymonosulfate in water. Journal of Hazardous Materials, 332, 195–204. https://doi.org/10.1016/j.jhazmat.2017.03.010
  • Ikhuoria, E., Omorogbe, S., Sone, B., & Maaza, M. (2018). Bioinspired shape controlled antiferromagnetic co 3 o 4 with prism like-anchored octahedron morphology: A facile green synthesis using manihot esculenta crantz extract. Science and Technology of Materials, 30(2), 92–98. https://doi.org/10.1016/j.stmat.2018.02.003
  • Jiang, X.-Y., Zhang, L., Liu, Y.-L., Yu, X.-D., Liang, Y.-Y., Qu, P., Zhao, W.-W., Xu, J.-J., & Chen, H.-Y. (2018). Hierarchical cuins2-based heterostructure: Application for photocathodic bioanalysis of sarcosine. Biosensors & Bioelectronics, 107, 230–236. https://doi.org/10.1016/j.bios.2018.02.039
  • Khan, Z. G., & Patil, P. O. (2021). Fabrication of polyethyleneimine surface-functionalized fluorescent carbon dots and its applications towards highly sensitive and selective detection of glutathione in aqueous medium and in vitro cell imaging of hela cells. Journal of Materials Science: Materials in Electronics, 32(18), 23215–23231.
  • Kumar, H., Bhardwaj, K., Sharma, R., Nepovimova, E., Kuča, K., Dhanjal, D. S., Verma, R., Bhardwaj, P., Sharma, S., & Kumar, D. (2020). Fruit and vegetable peels: Utilization of high value horticultural waste in novel industrial applications. Molecules (Basel, Switzerland), 25(12), 2812. https://doi.org/10.3390/molecules25122812
  • Kumar, N., & Kishore, N. (2014). Interaction of homologous series of amino acids with sarcosine in presence of denaturant: Volumetric and calorimetric approach. The Journal of Chemical Thermodynamics, 68, 244–252. https://doi.org/10.1016/j.jct.2013.09.009
  • Li, R., Huang, X.-L., & Jiang, Z.-T. (2008). Determination of trace amounts of cobalt in foods by polymer-phase fluorophotometry with thiamine. European Food Research and Technology, 227(1), 111–116. https://doi.org/10.1007/s00217-007-0699-4
  • Li, X., Li, J., Shi, Y., Zhang, M., Fan, S., Yin, Z., Qin, M., Lian, T., & Li, X. (2018). Rational design of cobalt and nitrogen co-doped carbon hollow frameworks for efficient photocatalytic degradation of gaseous toluene. Journal of Colloid and Interface Science, 528, 45–52. https://doi.org/10.1016/j.jcis.2018.05.067
  • Li, Y.-F., Lin, Z.-Z., Hong, C.-Y., & Huang, Z.-Y. (2021). Histamine detection in fish samples based on indirect competitive elisa method using iron-cobalt co-doped carbon dots labeled histamine antibody. Food Chemistry, 345, 128812. https://doi.org/10.1016/j.foodchem.2020.128812
  • Lin, X., Tian, M., Cao, C., Shu, T., Wen, Y., Su, L., & Zhang, X. (2022). Using bimetallic au/cu nanoplatelets for construction of facile and label-free inner filter effect-based photoluminescence sensing platform for sarcosine detection. Analytica Chimica Acta, 1192, 339331. https://doi.org/10.1016/j.aca.2021.339331
  • Liu, T., Fu, B., Chen, J., & Li, K. (2019). An electrochemical sarcosine sensor based on biomimetic recognition. Microchimica Acta, 186(3), 1–8. https://doi.org/10.1007/s00604-019-3240-0
  • Liu, Z., Liu, C., He, L., Liu, J., Li, L., Yang, S., Tan, Y., Liu, X., & Xiao, X. (2023). A cascade signal amplification strategy for the ultrasensitive fluorescence detection of cu2+ via λ-exonuclease-assisted target recycling with mismatched catalytic hairpin assembly. Biosensors, 13(10), 918. https://doi.org/10.3390/bios13100918
  • Liu, H., Sun, Y., Yang, J., Hu, Y., Yang, R., Li, Z., Qu, L., & Lin, Y. (2019). High performance fluorescence biosensing of cysteine in human serum with superior specificity based on carbon dots and cobalt-derived recognition. Sensors and Actuators B: Chemical, 280, 62–68. https://doi.org/10.1016/j.snb.2018.10.029
  • Lu, Q., Zou, X., Wang, X., An, L., Shao, Z., & Bu, Y. (2023). Simultaneous reactant accessibility and charge transfer engineering in co-doped ruo2-supported ocnt for robust rechargeable zinc-air batteries. Applied Catalysis B: Environmental, 325, 122323. https://doi.org/10.1016/j.apcatb.2022.122323
  • Luo, Y., Wang, J., Yang, L., Gao, T., & Pei, R. (2018). In vitro selection of DNA aptamers for the development of fluorescent aptasensor for sarcosine detection. Sensors and Actuators B: Chemical, 276, 128–135. https://doi.org/10.1016/j.snb.2018.08.105
  • Mbage, B., Li, Y., Si, H., Zhang, X., Li, Y., Wang, X., Salah, A., & Zhang, K. (2020). Fabrication of folate functionalized polyoxometalate nanoparticle to simultaneously detect h2o2 and sarcosine in colorimetry. Sensors and Actuators B: Chemical, 304, 127429. https://doi.org/10.1016/j.snb.2019.127429
  • mEditors PO. (2022). Retraction: Sarcosine up-regulates expression of genes involved in cell cycle progression of metastatic models of prostate cancer. Public Library of Science.
  • Meyer, T. E., Fox, S. D., Issaq, H. J., Xu, X., Chu, L. W., Veenstra, T. D., & Hsing, A. W. (2011). A reproducible and high-throughput hplc/ms method to separate sarcosine from α- and β-alanine and to quantify sarcosine in human serum and urine. Analytical Chemistry, 83(14), 5735–5740. https://doi.org/10.1021/ac201003r
  • Muhammad H, Shaheen R, Akram B, Abdin Z, Haq S, Mahsud S, Ali S, Taj R. 2020. Green synthesis of cobalt oxide nanoparticles for potential biological applications. Materials Research Express, 2, 0250197. https://doi.org/10.1088/2053-1591/ab70dd
  • Pal, T., Mohiyuddin, S., & Packirisamy, G. (2018). Facile and green synthesis of multicolor fluorescence carbon dots from curcumin: In vitro and in vivo bioimaging and other applications. ACS Omega, 3(1), 831–843. https://doi.org/10.1021/acsomega.7b01323
  • Qiao, Y., Fang, Y., Shang, J., Zhao, X., Li, S., Mao, G., & Wang, H. (2022). A fluorimetric test strip with suppressed “coffee ring effect” for selective mercury ion analysis. The Analyst, 147(12), 2633–2639. https://doi.org/10.1039/d2an00562j
  • Rebelo, T. S., Pereira, C. M., Sales, M. G. F., Noronha, J. P., Costa-Rodrigues, J., Silva, F., & Fernandes, M. H. (2014). Sarcosine oxidase composite screen-printed electrode for sarcosine determination in biological samples. Analytica Chimica Acta, 850, 26–32. https://doi.org/10.1016/j.aca.2014.08.005
  • Si, Y., Li, Y., Yang, G., Zhang, S., Yang, L., Dai, W., & Wang, H. (2022). Zeolitic imidazolate framework-8 for ratiometric fluorescence sensing tetracyclines in environmental water based on aie effects. Analytica Chimica Acta, 1199, 339576. https://doi.org/10.1016/j.aca.2022.339576
  • Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., Laxman, B., Mehra, R., Lonigro, R. J., Li, Y., Nyati, M. K., Ahsan, A., Kalyana-Sundaram, S., Han, B., Cao, X., Byun, J., Omenn, G. S., Ghosh, D., Pennathur, S., … Chinnaiyan, A. M. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457(7231), 910–914. https://doi.org/10.1038/nature07762
  • Strzelecki, D., Podgórski, M., Kałużyńska, O., Gawlik-Kotelnicka, O., Stefańczyk, L., Kotlicka-Antczak, M., Gmitrowicz, A., & Grzelak, P. (2015). Supplementation of antipsychotic treatment with the amino acid sarcosine influences proton magnetic resonance spectroscopy parameters in left frontal white matter in patients with schizophrenia. Nutrients, 7(10), 8767–8782. https://doi.org/10.3390/nu7105427
  • Sun, N.-N., & Yan, B. (2018). A fluorescent probe based on a tb 3+/cu 2+ co-functionalized mof for urinary sarcosine detection. The Analyst, 143(10), 2349–2355. https://doi.org/10.1039/c8an00425k
  • Tang, P., Wang, Y., & He, F. (2020). Electrochemical sensor based on super-magnetic metal–organic framework@ molecularly imprinted polymer for sarcosine detection in urine. Journal of Saudi Chemical Society, 24(8), 620–630. https://doi.org/10.1016/j.jscs.2020.06.004
  • Tao, B.-B., Wu, N.-N., Zhang, H.-D., & Wang, H.-B. (2022). Blocking the cu (ii) ions mediated catalytical ability for construction of ratiometric fluorescence sensing platform based on glutathione-stabilized copper nanoclusters. Journal of the Electrochemical Society, 169(3), 037529. https://doi.org/10.1149/1945-7111/ac5f1e
  • Wang, H.-B., Mao, A.-L., Tao, B.-B., Zhang, H.-D., & Liu, Y.-M. (2021). Fabrication of multiple molecular logic gates made of fluorescent DNA-templated au nanoclusters. New Journal of Chemistry, 45(9), 4195–4201. https://doi.org/10.1039/D0NJ06192A
  • Wang, Q., Yang, H., Zhang, Q., Ge, H., Zhang, S., Wang, Z., & Ji, X. (2019). Strong acid-assisted preparation of green-emissive carbon dots for fluorometric imaging of ph variation in living cells. Microchimica Acta, 186(7), 1–9. https://doi.org/10.1007/s00604-019-3569-4
  • Wang, M., Zhang, L., Zhou, X., Zhang, J., Zhou, C., & Su, X. (2022). Fluorescence sensing platform for sarcosine analysis based on nitrogen-doping copper nanosheets and gold nanoclusters. Analytica Chimica Acta, 1223, 340188. https://doi.org/10.1016/j.aca.2022.340188
  • Wu, P.-L., Tang, H.-S., Lane, H.-Y., Tsai, C.-A., & Tsai, G. E. (2011). Sarcosine therapy for obsessive compulsive disorder: A prospective, open-label study. Journal of Clinical Psychopharmacology, 31(3), 369–374. https://doi.org/10.1097/JCP.0b013e3182189878
  • Xu, L., Jiang, Q., Xiao, Z., Li, X., Huo, J., Wang, S., & Dai, L. (2016). Plasma‐engraved co3o4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angewandte Chemie, 128(17), 5363–5367. https://doi.org/10.1002/ange.201600687
  • Xu, C., Liu, Q., Chu, S., Li, P., Wang, F., Si, Y., Mao, G., Wu, C., & Wang, H. (2023). A microdots array-based fluoremetric assay with superwettability profile for simultaneous and separate analysis of iron and copper in red wine. Analytica Chimica Acta, 1254, 341045. https://doi.org/10.1016/j.aca.2023.341045
  • Yang, H., Wang, J., Yang, C., Zhao, X., Xie, S., & Ge, Z. (2018). Nano pt@ zif8 modified electrode and its application to detect sarcosine. Journal of the Electrochemical Society, 165(5), H247–H250. https://doi.org/10.1149/2.1231805jes
  • Yetilmezsoy, K., Demirel, S., & Vanderbei, R. J. (2009). Response surface modeling of pb (ii) removal from aqueous solution by pistacia vera l.: Box–behnken experimental design. Journal of Hazardous Materials, 171(1-3), 551–562. https://doi.org/10.1016/j.jhazmat.2009.06.035
  • Yoon, H., Xu, A., Sterbinsky, G. E., Arena, D. A., Wang, Z., Stephens, P. W., Meng, Y. S., & Carroll, K. J. (2015). In situ non-aqueous nucleation and growth of next generation rare-earth-free permanent magnets. Physical Chemistry Chemical Physics: PCCP, 17(2), 1070–1076. https://doi.org/10.1039/c4cp04451g
  • Zhang, H.-Y., Wang, Y., Xiao, S., Wang, H., Wang, J.-H., & Feng, L. (2017). Rapid detection of Cr (vi) ions based on cobalt (ii)-doped carbon dots. Biosensors & Bioelectronics, 87, 46–52. https://doi.org/10.1016/j.bios.2016.08.010
  • Zhong, Q., Qin, X., Yuan, C., Shi, R., & Wang, Y. (2021). Colorimetric determination of sarcosine in human urine with enzyme-like reaction mediated au nanorods etching. Microchemical Journal, 165, 106120. https://doi.org/10.1016/j.microc.2021.106120

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.