175
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In silico screening of phytoconstituents as potential anti-inflammatory agents targeting NF-κB p65: an approach to promote burn wound healing

, , , , &
Received 29 May 2023, Accepted 10 Jan 2024, Published online: 29 Jan 2024

References

  • Abraham, M. J., & Gready, J. E. (2011). Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. Journal of Computational Chemistry, 32(9), 2031–2040. https://doi.org/10.1002/jcc.21773
  • Akgun, A. E., & Alkin, M. (2023). Pain management with topical ibuprofen in partial-thickness burn wounds and effects on wound healing: A prospective randomized clinical study. Wound Management & Prevention, 69(1), 32–48. https://doi.org/10.25270/wmp.2023.1.3248
  • Alyoussef, A., El-Gogary, R. I., Ahmed, R. F., Ahmed Farid, O. A. H., Bakeer, R. M., & Nasr, M. (2021). The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. Journal of Drug Delivery Science and Technology, 62, 102360. https://doi.org/10.1016/j.jddst.2021.102360
  • Auphan, N., DiDonato, J. A., Rosette, C., Helmberg, A., & Karin, M. (1995). Immunosuppression by glucocorticoids: Inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science (New York, N.Y.), 270(5234), 286–290. https://doi.org/10.1126/science.270.5234.286
  • Auwardt, R. B., Mudge, S. J., Chen, C. G., & Power, D. A. (1998). Regulation of nuclear factor kappaB by corticosteroids in rat mesangial cells. Journal of the American Society of Nephrology: JASN, 9(9), 1620–1628. https://doi.org/10.1681/ASN.V991620
  • Bairoch, A., Apweiler, R., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Natale, D. A., O'Donovan, C., Redaschi, N., & Yeh, L. S. (2005). The Universal Protein Resource (UniProt). Nucleic Acids Research, 33(Database issue), D154–9. https://doi.org/10.1093/nar/gki070
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bikadi, Z., & Hazai, E. (2009). Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. Journal of Cheminformatics, 1(1), 15. https://doi.org/10.1186/1758-2946-1-15
  • Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10(1), 421. https://doi.org/10.1186/1471-2105-10-421
  • Chen, F., Huang, D. B., & Ghosh, G. (1997). Crystal structure of the NFKB P50/P65 heterodimer complexed to the immunoglobulin kB DNA.
  • Chen, F. E., Huang, D. B., Chen, Y. Q., & Ghosh, G. (1998a). Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature, 391(6665), 410–413. https://doi.org/10.1038/34956
  • Chen, S., Yang, Y., Feng, H., Wang, H., Zhao, R., & Liu, H. (2014). Baicalein inhibits interleukin-1β-induced proliferation of human rheumatoid arthritis fibroblast-like synoviocytes. Inflammation, 37(1), 163–169. https://doi.org/10.1007/s10753-013-9725-9
  • Chen, Y. Q., Ghosh, S., & Ghosh, G. (1998b). A novel DNA recognition mode by the NF-kappa B p65 homodimer. Nature Structural Biology, 5(1), 67–73. https://doi.org/10.1038/nsb0198-67
  • Choudhury, C., Arul Murugan, N., & Priyakumar, U. D. (2022). Structure-based drug repurposing: Traditional and advanced AI/ML-aided methods. Drug Discovery Today, 27(7), 1847–1861. https://doi.org/10.1016/j.drudis.2022.03.006
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Das, S. K., Deka, S. J., Paul, D., Gupta, D. D., Das, T. J., Maravi, D. K., Tag, H., & Hui, P. K. (2022). In-silico based identification of phytochemicals from Houttuynia cordata Thunb. as potential inhibitors for overexpressed HER2 and VEGFR2 cancer genes. Journal of Biomolecular Structure & Dynamics, 40(15), 6857–6867. https://doi.org/10.1080/07391102.2021.1891136
  • Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M-y., Pieper, U., & Sali, A. (2006). Comparative protein structure modeling using modeller. Current Protocols in Bioinformatics, Chapter 5(1), Unit–UnU5.6. https://doi.org/10.1002/0471250953.bi0506s15
  • Fazil, M. H., Kumar, S., Farmer, R., Pandey, H. P., & Singh, D. V. (2012). Binding efficiencies of carbohydrate ligands with different genotypes of cholera toxin B: Molecular modeling, dynamics and docking simulation studies. Journal of Molecular Modeling, 18(1), 1–10. https://doi.org/10.1007/s00894-010-0947-6
  • Florio, T. J., Lokareddy, R. K., Yeggoni, D. P., Sankhala, R. S., Ott, C. A., Gillilan, R. E., & Cingolani, G. (2022). Differential recognition of canonical NF-κB dimers by Importin α3. Nature Communications, 13(1), 1207. https://doi.org/10.1038/s41467-022-28846-z
  • Ganchi, P. A., Sun, S. C., Greene, W. C., & Ballard, D. W. (1993). A novel NF-kappa B complex containing p65 homodimers: Implications for transcriptional control at the level of subunit dimerization. Molecular and Cellular Biology, 13(12), 7826–7835. https://doi.org/10.1128/MCB.13.12.7826
  • Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563
  • George, B., Suchithra, T. V., & Bhatia, N. (2021). Burn injury induces elevated inflammatory traffic: The role of NF-κB. Inflammation Research: Official Journal of the European Histamine Research Society. [et al.], 70(1), 51–65. https://doi.org/10.1007/s00011-020-01426-x
  • Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2019). ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm, 10(1), 148–157. https://doi.org/10.1039/c8md00472b
  • Gupta, S. C., Sundaram, C., Reuter, S., & Aggarwal, B. B. (2010). Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochimica et Biophysica Acta, 1799(10-12), 775–787. https://doi.org/10.1016/j.bbagrm.2010.05.004
  • Halgren, T. A. (1996). Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. Journal of Computational Chemistry, 17(5-6), 520–552. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W
  • He, X., Wei, Z., Zhou, E., Chen, L., Kou, J., Wang, J., & Yang, Z. (2015). Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice. International Immunopharmacology, 28(1), 470–476. https://doi.org/10.1016/j.intimp.2015.07.012
  • Herrington, F. D., Carmody, R. J., & Goodyear, C. S. (2016). Modulation of NF-κB signaling as a therapeutic target in autoimmunity. Journal of Biomolecular Screening, 21(3), 223–242. https://doi.org/10.1177/1087057115617456
  • Hoesel, B., & Schmid, J. A. (2013). The complexity of NF-κB signaling in inflammation and cancer. Molecular Cancer, 12(1), 86. https://doi.org/10.1186/1476-4598-12-86
  • Hörl, W. H. (2010). Nonsteroidal anti-inflammatory drugs and the kidney. Pharmaceuticals (Basel, Switzerland), 3(7), 2291–2321. https://doi.org/10.3390/ph3072291
  • Hou, Y., Moreau, F., & Chadee, K. (2012). PPARγ is an E3 ligase that induces the degradation of NFκB/p65. Nature Communications, 3(1), 1300. https://doi.org/10.1038/ncomms2270
  • Huxford, T., Huang, D. B., Malek, S., & Ghosh, G. (1998). The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell, 95(6), 759–770. https://doi.org/10.1016/s0092-8674(00)81699-2
  • Jacobs, M. D., & Harrison, S. C. (1998). Structure of an IkappaBalpha/NF-kappaB complex. Cell, 95(6), 749–758. https://doi.org/10.1016/s0092-8674(00)81698-0
  • Jeschke, M. G., van Baar, M. E., Choudhry, M. A., Chung, K. K., Gibran, N. S., & Logsetty, S. (2020). Burn injury. Nature Reviews. Disease Primers, 6(1), 11. https://doi.org/10.1038/s41572-020-0145-5
  • Jha, Y., Dehury, B., Kumar, S. P. J., Chaurasia, A., Singh, U. B., Yadav, M. K., Angadi, U. B., Ranjan, R., Tripathy, M., Subramanian, R. B., Kumar, S., & Simal-Gandara, J. (2022). Delineation of molecular interactions of plant growth promoting bacteria induced β-1,3-glucanases and guanosine triphosphate ligand for antifungal response in rice: A molecular dynamics approach. Molecular Biology Reports, 49(4), 2579–2589. https://doi.org/10.1007/s11033-021-07059-5
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40(Web Server issue), W294–W297. https://doi.org/10.1093/nar/gks493
  • Kumar, A., & Bora, U. (2012). In silico inhibition studies of NF-kB p50 subunit by curcumin and its natural derivatives. Medicinal Chemistry Research, 21(10), 3281–3287. https://doi.org/10.1007/s00044-011-9873-0
  • Kumar, S., Fazil, M., Ahmad, K., Tripathy, M., Rajapakse, J. C., & Verma, N. K. (2019). Computational Analysis of Protein-Protein Interactions in Motile T-Cells. Methods in Molecular Biology (Clifton, N.J.), 1930, 149–156. https://doi.org/10.1007/978-1-4939-9036-8_18
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science: A Publication of the Protein Society, 27(1), 129–134. https://doi.org/10.1002/pro.3289
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Leger, M. M., Ros-Rocher, N., Najle, S. R., & Ruiz-Trillo, I. (2022). Rel/NF-κB transcription factors emerged at the onset of opisthokonts. Genome Biol Evol,.14(1), evab289.
  • Li, J., Ma, J., Wang, K. S., Mi, C., Wang, Z., Piao, L. X., Xu, G. H., Li, X., Lee, J. J., & Jin, X. (2016). Baicalein inhibits TNF-α-induced NF-κB activation and expression of NF-κB-regulated target gene products. Oncology Reports, 36(5), 2771–2776. https://doi.org/10.3892/or.2016.5108
  • Li, J., Sun, Z., Luo, G., Wang, S., Cui, H., Yao, Z., Xiong, H., He, Y., Qian, Y., & Fan, C. (2021). Quercetin attenuates trauma-induced heterotopic ossification by tuning immune cell infiltration and related inflammatory insult. Frontiers in Immunology, 12, 649285. https://doi.org/10.3389/fimmu.2021.649285
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Liu, Z., Xiang, H., Deng, Q., Fu, W., Li, Y., Yu, Z., Qiu, Y., Mei, Z., & Xu, L. (2023). Baicalin and baicalein attenuate hyperuricemic nephropathy via inhibiting PI3K/AKT/NF-κB signalling pathway. Nephrology (Carlton, Vic.), 28(6), 315–327. https://doi.org/10.1111/nep.14159
  • Lu, T., Yang, M., Huang, D. B., Wei, H., Ozer, G. H., Ghosh, G., & Stark, G. R. (2013). Role of lysine methylation of NF-κB in differential gene regulation. Proceedings of the National Academy of Sciences of the United States of America, 110(33), 13510–13515. https://doi.org/10.1073/pnas.1311770110
  • Mahung, C., Wallet, S. M., Jacobs, J. E., Zhou, L. Y., Zhou, H., Cairns, B. A., & Maile, R. (2022). Multiplexed human gene expression analysis reveals a central role of the TLR/mTOR/PPAR&gamma; and NFkB axes in burn and inhalation injury-induced changes in systemic immunometabolism and long-term patient outcomes. International Journal of Molecular Sciences, 23(16), 9418. https://doi.org/10.3390/ijms23169418
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Markiewicz-Gospodarek, A., Kozioł, M., Tobiasz, M., Baj, J., Radzikowska-Büchner, E., & Przekora, A. (2022). Burn wound healing: clinical complications, medical care, treatment, and dressing types: The current state of knowledge for clinical practice. International Journal of Environmental Research and Public Health, 19(3), 1338. https://doi.org/10.3390/ijerph19031338
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One, 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264
  • MedlinePlus. (2023). Ibuprofen.
  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. P. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Scientific Reports, 8(1), 4329. https://doi.org/10.1038/s41598-018-22631-z
  • Mohanty, C., Das, M., & Sahoo, S. K. (2012). Sustained wound healing activity of curcumin loaded oleic acid based polymeric bandage in a rat model. Molecular Pharmaceutics, 9(10), 2801–2811. https://doi.org/10.1021/mp300075u
  • Mohanty, C., & Sahoo, S. K. (2017). Curcumin and its topical formulations for wound healing applications. Drug Discovery Today, 22(10), 1582–1592. https://doi.org/10.1016/j.drudis.2017.07.001
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Opriessnig, E., Luze, H., Smolle, C., Draschl, A., Zrim, R., Giretzlehner, M., Kamolz, L. P., & Nischwitz, S. P. (2023). Epidemiology of burn injury and the ideal dressing in global burn care - Regional differences explored. Burns: Journal of the International Society for Burn Injuries, 49(1), 1–14. https://doi.org/10.1016/j.burns.2022.06.018
  • Pattnaik, S., Mohanty, S., Sahoo, S. K., & Mohanty, C. (2023). A mechanistic perspective on the role of phytoconstituents-based pharmacotherapeutics and their topical formulations in chronic wound management. Journal of Drug Delivery Science and Technology, 84, 104546. https://doi.org/10.1016/j.jddst.2023.104546
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pham, K., Parikh, K., & Heinrich, E. C. (2021). Hypoxia and inflammation: insights from high-altitude physiology. Frontiers in Physiology, 12, 676782. https://doi.org/10.3389/fphys.2021.676782
  • Priyadarshi, A., Keshri, G. K., & Gupta, A. (2022). Hippophae rhamnoides L. leaf extract diminishes oxidative stress, inflammation and ameliorates bioenergetic activation in full-thickness burn wound healing. Phytomedicine plus, 2(3), 100292. https://doi.org/10.1016/j.phyplu.2022.100292
  • Reddy, A. T., Lakshmi, S. P., Varadacharyulu, N. C., & Kodidhela, L. D. (2021). Epigallocatechin gallate (EGCG) – A novel covalent NF- κB inhibitor: Structural and molecular characterization. Journal of Cardiovascular Disorders, 7, 1041-1053.
  • Riedlinger, T., Liefke, R., Meier-Soelch, J., Jurida, L., Nist, A., Stiewe, T., Kracht, M., & Schmitz, M. L. (2019). NF-κB p65 dimerization and DNA-binding is important for inflammatory gene expression. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 33(3), 4188–4202. https://doi.org/10.1096/fj.201801638R
  • Romo-Rico, J., Krishna, S. M., Bazaka, K., Golledge, J., & Jacob, M. V. (2022). Potential of plant secondary metabolite-based polymers to enhance wound healing. Acta Biomaterialia, 147, 34–49. https://doi.org/10.1016/j.actbio.2022.05.043
  • Ruben, S. M., Narayanan, R., Klement, J. F., Chen, C. H., & Rosen, C. A. (1992). Functional characterization of the NF-kappa B p65 transcriptional activator and an alternatively spliced derivative. Molecular and Cellular Biology, 12(2), 444–454. https://doi.org/10.1128/MCB.12.2.444
  • Saleh, H. A., Yousef, M. H., & Abdelnaser, A. (2021). The anti-inflammatory properties of phytochemicals and their effects on epigenetic mechanisms involved in TLR4/NF-κB-mediated inflammation. Frontiers in Immunology, 12, 606069. https://doi.org/10.3389/fimmu.2021.606069
  • Sander, T., Freyss, J., von Korff, M., & Rufener, C. (2015). DataWarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 55(2), 460–473. https://doi.org/10.1021/ci500588j
  • Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524. https://doi.org/10.1021/acs.jctc.7b00028
  • Shaker, B., Ahmad, S., Lee, J., Jung, C., & Na, D. (2021). In silico methods and tools for drug discovery. Computers in Biology and Medicine, 137, 104851. https://doi.org/10.1016/j.compbiomed.2021.104851
  • Shao, Q. H., Yin, X. D., Liu, H. X., Zhao, B., Huang, J. Q., & Li, Z. L. (2021). Kidney injury following ibuprofen and acetaminophen: A real-world analysis of post-marketing surveillance data. Frontiers in Pharmacology, 12, 750108. https://doi.org/10.3389/fphar.2021.750108
  • Shen, M. Y., & Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein Science: A Publication of the Protein Society, 15(11), 2507–2524. https://doi.org/10.1110/ps.062416606
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vabeiryureilai, M., Lalrinzuali, K., & Jagetia, G. C. (2022). NF-κB and COX-2 repression with topical application of hesperidin and naringin hydrogels augments repair and regeneration of deep dermal wounds. Burns: Journal of the International Society for Burn Injuries, 48(1), 132–145. https://doi.org/10.1016/j.burns.2021.04.016
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Wang, H., Zhong, H., Gao, C., Zang, J., & Yang, D. (2021). The distinct properties of the consecutive disordered regions inside or outside protein domains and their functional significance. International Journal of Molecular Sciences, 22(19), 10677. https://doi.org/10.3390/ijms221910677
  • Wei, H., Wang, B., Miyagi, M., She, Y., Gopalan, B., Huang, D. B., Ghosh, G., Stark, G. R., & Lu, T. (2013). PRMT5 dimethylates R30 of the p65 subunit to activate NF-κB. Proceedings of the National Academy of Sciences of the United States of America, 110(33), 13516–13521. https://doi.org/10.1073/pnas.1311784110
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–10. https://doi.org/10.1093/nar/gkm290
  • WorldHealthOrganization. (2018). Burns.
  • Yao, Y., Zhang, A., Yuan, C., Chen, X., & Liu, Y. (2021). Recent trends on burn wound care: Hydrogel dressings and scaffolds. Biomaterials Science, 9(13), 4523–4540. https://doi.org/10.1039/d1bm00411e
  • Yasir, M., Goyal, A., & Sonthalia, S. (2023). Corticosteroid adverse effects. In StatPearls, StatPearls Publishing Copyright © 2023. StatPearls Publishing LLC.
  • Yin, C., Xie, L., & Guo, Y. (2018). Phytochemical analysis and antibacterial activity of Gentiana macrophylla extract against bacteria isolated from burn wound infections. Microbial Pathogenesis, 114, 25–28. https://doi.org/10.1016/j.micpath.2017.10.049
  • Yu, H., Lin, L., Zhang, Z., Zhang, H., & Hu, H. (2020). Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduction and Targeted Therapy, 5(1), 209. https://doi.org/10.1038/s41392-020-00312-6
  • Yu, M., Qi, B., Xiaoxiang, W., Xu, J., & Liu, X. (2017). Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 90, 677–685. https://doi.org/10.1016/j.biopha.2017.04.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.