194
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Rational design for novel heterocyclic based Donepezil analogs for Alzheimer’s disease: an in silico approach

, ORCID Icon & ORCID Icon
Received 09 Jun 2023, Accepted 10 Jan 2024, Published online: 23 Jan 2024

References

  • Akrami, H., Mirjalili, B. F., Khoobi, M., Nadri, H., Moradi, A., Sakhteman, A., Emami, S., Foroumadi, A., & Shafiee, A. (2014). Indolinone-based acetylcholinesterase inhibitors: Synthesis, biological activity and molecular modeling. European Journal of Medicinal Chemistry, 84, 375–381. https://doi.org/10.1016/j.ejmech.2014.01.017
  • Aljohani, G., Al-Sheikh Ali, A., Alraqa, S. Y., Itri Amran, S., & Basar, N. (2021). Synthesis, molecular docking and biochemical analysis of aminoalkylated naphthalene-based chalcones as acetylcholinesterase inhibitors. Journal of Taibah University for Science, 15(1), 781–797. https://doi.org/10.1080/16583655.2021.2005921
  • Baharloo, F., Moslemin, M. H., Nadri, H., Asadipour, A., Mahdavi, M., Emami, S., Firoozpour, L., Mohebat, R., Shafiee, A., & Foroumadi, A. (2015). Benzofuran-derived benzylpyridinium bromides as potent acetylcholinesterase inhibitors. European Journal of Medicinal Chemistry, 93, 196–201. https://doi.org/10.1016/j.ejmech.2015.02.009
  • Bajda, M., Więckowska, A., Hebda, M., Guzior, N., Sotriffer, C. A., & Malawska, B. (2013). Structure-based search for new inhibitors of cholinesterases. International Journal of Molecular Sciences, 14(3), 5608–5632. https://doi.org/10.3390/ijms14035608
  • Barreiro, E. J., Camara, C. A., Verli, H., Brazil-Más, L., Castro, N. G., Cintra, W. M., Aracava, Y., Rodrigues, C. R., & Fraga, C. A. M. (2003). Design, synthesis, and pharmacological profile of novel fused pyrazolo[4,3-d]pyridine and pyrazolo[3,4-b][1,8]naphthyridine isosteres: A new class of potent and selective acetylcholinesterase inhibitors. Journal of Medicinal Chemistry, 46(7), 1144–1152. https://doi.org/10.1021/jm020391n
  • Bautista-Aguilera, O. M., Esteban, G., Bolea, I., Nikolic, K., Agbaba, D., MORaleda, I., Iriepa, I., Samadi, A., Soriano, E., Unzeta, M., & Marco-Contelles, J. (2014). Design, synthesis, pharmacological evaluation, QSAR analysis, molecular modeling and ADMET of novel donepezil–indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry, 75, 82–95. https://doi.org/10.1016/j.ejmech.2013.12.028
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Blennow, K., de Leon, M. J., & Zetterberg, H. (2006). Alzheimer’s disease. Lancet (London, England), 368(9533), 387–403. https://doi.org/10.1016/S0140-6736(06)69113-7
  • Bullock, R., Touchon, J., Bergman, H., Gambina, G., He, Y., Rapatz, G., Nagel, J., & Lane, R. (2005). Rivastigmine and donepezil treatment in moderate to moderately-severe Alzheimer’s disease over a 2-year period. Current Medical Research and Opinion, 21(8), 1317–1327. https://doi.org/10.1185/030079905X56565
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. Journal of Chemical Physics. 126(1), 014101.
  • Camps, P., Formosa, X., Galdeano, C., Gómez, T., Muñoz-Torrero, D., ScarpeLLini, M., Viayna, E., Badia, A., Clos, M. V., Camins, A., Pallàs, M., BaRTolini, M., Mancini, F., Andrisano, V., Estelrich, J., Lizondo, M., Bidon-Chanal, A., & Luque, F. J. (2008). Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation. Journal of Medicinal Chemistry, 51(12), 3588–3598. https://doi.org/10.1021/jm8001313
  • Rodrigues Simões, M. C., Dias Viegas, F. P., Moreira, M. S., de Freitas Silva, M., Riquiel, M. M., da Rosa, P. M., Castelli, M. R., dos SaNTos, M. H., Soares, M. G., & Viegas, C. (2014). Donepezil: An important prototype to the design of new drug candidates for Alzheimer’s disease. Mini Reviews in Medicinal Chemistry, 14(1), 2–19. https://doi.org/10.2174/1389557513666131119201353
  • Cheung, J., Rudolph, M. J., Burshteyn, F., Cassidy, M. S., Gary, E. N., Love, J., Franklin, M. C., & Height, J. J. (2012). Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of Medicinal Chemistry, 55(22), 10282–10286. https://doi.org/10.1021/jm300871x
  • Choubey, P. K., Tripathi, A., Sharma, P., & Shrivastava, S. K. (2020). Design, synthesis, and multitargeted profiling of N-benzylpyrrolidine derivatives for the treatment of Alzheimer’s disease. Bioorganic & Medicinal Chemistry, 28(22), 115721. https://doi.org/10.1016/j.bmc.2020.115721
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dartigues, J. F. (2009). Alzheimer’s disease: A global challenge for the 21st century. The Lancet. Neurology, 8(12), 1082–1083. https://doi.org/10.1016/S1474-4422(09)70298-4
  • Davies, P., & Maloney, A. J. F. (1976). Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet (London, England), 2(8000), 1403. https://doi.org/10.1016/s0140-6736(76)91936-x
  • Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/jm000942e
  • Francis, P. T., Palmer, A. M., Snape, M., & Wilcock, G. K. (1999). The cholinergic hypothesis of Alzheimer’s disease: A review of progress. Journal of Neurology, Neurosurgery, and Psychiatry, 66(2), 137–147. https://doi.org/10.1136/jnnp.66.2.137
  • Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., PeTersson, G., & Nakatsuji, H. (2016). Gaussian 16. Gaussian, Inc.
  • Frost, B., Jacks, R. L., & Diamond, M. I. (2009). Propagation of tau misfolding from the outside to the inside of a cell. The Journal of Biological Chemistry, 284(19), 12845–12852. https://doi.org/10.1074/jbc.M808759200
  • Ganeshpurkar, A., Singh, R., Gore, P. G., Kumar, D., Gutti, G., Kumar, A., & Singh, S. K. (2020). Structure-based screening and molecular dynamics simulation studies for the identification of potential acetylcholinesterase inhibitors. Molecular Simulation,.46(3), 169–185. https://doi.org/10.1080/08927022.2019.1682572
  • Ghose, A. K., Herbertz, T., Hudkins, R. L., Dorsey, B. D., & Mallamo, J. P. (2012). Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chemical Neuroscience, 3(1), 50–68. https://doi.org/10.1021/cn200100h
  • Ghotbi, G., Mahdavi, M., Najafi, Z., Moghadam, F. H., Hamzeh-Mivehroud, M., Davaran, S., & Dastmalchi, S. (2020). Design, synthesis, biological evaluation, and docking study of novel dual-acting thiazole-pyridiniums inhibiting acetylcholinesterase and β-amyloid aggregation for Alzheimer’s disease. Bioorganic Chemistry, 103, 104186. https://doi.org/10.1016/j.bioorg.2020.104186
  • Haghighijoo, Z., Zamani, L., Moosavi, F., & Emami, S. (2022). Therapeutic potential of quinazoline derivatives for Alzheimer’s disease: A comprehensive review. European Journal of Medicinal Chemistry, 227, 113949. https://doi.org/10.1016/j.ejmech.2021.113949
  • Hardy, J., & Allsop, D. (1991). Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends in Pharmacological Sciences, 12(10), 383–388. https://doi.org/10.1016/0165-6147(91)90609-v
  • Harrington, C. R. (2012). The molecular pathology of Alzheimer’s disease. Neuroimaging Clinics of North America, 22(1), 11–22, vii. https://doi.org/10.1016/j.nic.2011.11.003
  • Hassan, H. A., Allam, A. E., Abu-Baih, D. H., Mohamed, M. F. A., Abdelmohsen, U. R., Shimizu, K., Desoukey, S. Y., Hayallah, A. M., Elrehany, M. A., Mohamed, K. M., & Kamel, M. S. (2020). Isolation and characterization of novel acetylcholinesterase inhibitors from Ficus benghalensis L. leaves. RSC Advances, 10(60), 36920–36929. https://doi.org/10.1039/d0ra06565j
  • Heravi, M. M., & Zadsirjan, V. (2020). Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances, 10(72), 44247–44311. https://doi.org/10.1039/d0ra09198g
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hu, J., & Wang, X. (2021). Alzheimer’s disease: From pathogenesis to mesenchymal stem cell therapy – Bridging the missing link. Frontiers in Cellular Neuroscience, 15, 811852. https://doi.org/10.3389/fncel.2021.811852
  • Huang, J., & MacKerell, J. A. (2013). CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Husain, A., Balushi K, A., Akhtar, M. J., & Khan, S. A. (2021). Coumarin linked heterocyclic hybrids: A promising approach to develop multi target drugs for Alzheimer’s disease. Journal of Molecular Structure. 1241, 130618. https://doi.org/10.1016/j.molstruc.2021.130618
  • Ibrar, A., Khan, A., Ali, M., Sarwar, R., Mehsud, S., Farooq, U., Halimi, S. M. A., Khan, I., & Al-Harrasi, A. (2018). Combined in vitro and in silico studies for the anticholinesterase activity and pharmacokinetics of coumarinyl thiazoles and oxadiazoles. Frontiers in Chemistry, 6, 61. https://doi.org/10.3389/fchem.2018.00061
  • Jalili-Baleh, L., Forootanfar, H., Küçükkılınç, T. T., Nadri, H., Abdolahi, Z., Ameri, A., Jafari, M., Ayazgok, B., Baeeri, M., Rahimifard, M., Abbas Bukhari, S. N., Abdollahi, M., Ganjali, M. R., Emami, S., Khoobi, M. E. HDI., & Foroumadi, A. (2018). Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimer’s disease based on coumarin and lipoic acid scaffolds. European Journal of Medicinal Chemistry, 152, 600–614. https://doi.org/10.1016/j.ejmech.2018.04.058
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Junaid, M., Islam, N., Hossain, M. K., Ullah, M. O., & Halim, M. A. (2019). Metal based donepezil analogues designed to inhibit human acetylcholinesterase for Alzheimer’s disease. PloS One, 14(2), e0211935. https://doi.org/10.1371/journal.pone.0211935
  • Kareem, R. T., Abedinifar, F., Mahmood, E. A., Ebadi, A. G., Rajabi, F., & Vessally, E. (2021). The recent development of donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s agents: Highlights from 2010 to 2020 [https://doi.org/10.1039/D1RA03718H]. RSC Advances, 11(49), 30781–30797. https://doi.org/10.1039/d1ra03718h
  • Khanal, P., Zargari, F., Far, B. F., Kumar, D., R, M., Mahdi, Y. K., Jubair, N. K., Saraf, S. K., Bansal, P., Singh, R., Selvaraja, M., & Dey, Y. N. (2021). Integration of system biology tools to investigate huperzine A as an anti-Alzheimer agent. Frontiers in Pharmacology, 12, 785964. https://doi.org/10.3389/fphar.2021.785964
  • Korabecny, J., Dolezal, R., Cabelova, P., Horova, A., Hruba, E., Ricny, J., Sedlacek, L., Nepovimova, E., Spilovska, K., Andrs, M., Musilek, K., Opletalova, V. E. RONIKA., Sepsova, V., Ripova, D., & Kuca, K. (2014). 7-MEOTA–donepezil like compounds as cholinesterase inhibitors: Synthesis, pharmacological evaluation, molecular modeling and QSAR studies. European Journal of Medicinal Chemistry, 82, 426–438. https://doi.org/10.1016/j.ejmech.2014.05.066
  • Kryger, G., Silman, I., & Sussman, J. L. (1999). Structure of acetylcholinesterase complexed with E2020 (Aricept): Implications for the design of new anti-Alzheimer drugs. Structure (London, England: 1993), 7(3), 297–307. https://doi.org/10.1016/s0969-2126(99)80040-9
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa - A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lan, J.-S., Ding, Y., Liu, Y., Kang, P., Hou, J.-W., Zhang, X.-Y., Xie, S.-S., & Zhang, T. (2017). Design, synthesis and biological evaluation of novel coumarin-N-benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry, 139, 48–59. https://doi.org/10.1016/j.ejmech.2017.07.055
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review. B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/physrevb.37.785
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Martins, P., Jesus, J., Santos, S., Raposo, L. R., Roma-Rodrigues, C., Baptista, P. V., & Fernandes, A. R. (2015). Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules (Basel, Switzerland), 20(9), 16852–16891. https://doi.org/10.3390/molecules200916852
  • Martorana, A., Giacalone, V., Bonsignore, R., Pace, A., Gentile, C., Pibiri, I., Buscemi, S., Lauria, A., & PicciONello, A. P. (2016). Heterocyclic scaffolds for the treatment of Alzheimer’s disease. Current Pharmaceutical Design, 22(26), 3971–3995. https://doi.org/10.2174/1381612822666160518141650
  • McGeer, P. L., & Rogers, J. (1992). Anti‐inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology, 42(2), 447–449. https://doi.org/10.1212/wnl.42.2.447
  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS‐ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939–944. https://doi.org/10.1212/wnl.34.7.939
  • Moodie, L. W., Sepčić, K., Turk, T., Frangež, R., & Svenson, J. (2019). Natural cholinesterase inhibitors from marine organisms. Natural Product Reports, 36(8), 1053–1092. https://doi.org/10.1039/c9np00010k
  • Nichols, E., Steinmetz, J. D., Vollset, S. E., Fukutaki, K., Chalek, J., Abd-Allah, F., Abdoli, A., Abualhasan, A., Abu-Gharbieh, E., Akram, T. T., Al Hamad, H., Alahdab, F., Alanezi, F. M., Alipour, V., Almustanyir, S., Amu, H., Ansari, I., Arabloo, J., Ashraf, T., … Vos, T. (2022). Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 7(2), e105–e125. https://doi.org/10.1016/S2468-2667(21)00249-8
  • Nordberg, A., & Svensson, A.-L. (1998). Cholinesterase inhibitors in the treatment of Alzheimer’s disease. Drug Safety, 19(6), 465–480. https://doi.org/10.2165/00002018-199819060-00004
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Riaz N, Iftikhar M, Saleem M, Aziz ur R, Hussain S, Rehmat F, Afzal Z, Khawar S, Ashraf M, al-Rashida M. 2020. New synthetic 1,2,4-triazole derivatives: Cholinesterase inhibition and molecular docking studies. Results in Chemistry. 2:100041. https://doi.org/10.1016/j.rechem.2020.100041
  • Rogers, S. L., & Friedhoff, L. T. (1996). The efficacy and safety of donepezil in patients with Alzheimer’s disease: Results of a us multicentre, randomized, double-blind, placebo-controlled Trial. Dementia (Basel, Switzerland), 7(6), 293–303. https://doi.org/10.1159/000106895
  • Sağlık, B. N., Ilgın, S., & Özkay, Y. (2016). Synthesis of new donepezil analogues and investigation of their effects on cholinesterase enzymes. European Journal of Medicinal Chemistry, 124, 1026–1040. https://doi.org/10.1016/j.ejmech.2016.10.042
  • Scheltens, P., Blennow, K., Breteler, M. M. B., de Strooper, B., Frisoni, G. B., Salloway, S., & Van der Flier, W. M. (2016). Alzheimer’s disease. Lancet (London, England), 388(10043), 505–517. https://doi.org/10.1016/S0140-6736(15)01124-1
  • Shen, L-L., Liu, G-X., & Tang, Y. (2007). Molecular docking and 3D-QSAR studies of 2-substituted 1-indanone derivatives as acetylcholinesterase inhibitors. Acta Pharmacologica Sinica, 28(12), 2053–2063. https://doi.org/10.1111/j.1745-7254.2007.00664.x
  • Singh, A., Sharma, S., Arora, S., Attri, S., Kaur, P., Kaur Gulati, H. R. M., Bhagat, K., Kumar, N., Singh, H., Vir Singh, J., & Mohinder Singh Bedi, P. (2020). New coumarin-benzotriazole based hybrid molecules as inhibitors of acetylcholinesterase and amyloid aggregation. Bioorganic & Medicinal Chemistry Letters, 30(20), 127477. https://doi.org/10.1016/j.bmcl.2020.127477
  • Singh, K., Pal, R., Khan, S. A., Kumar, B., & Akhtar, M. J. (2021). Insights into the structure activity relationship of nitrogen-containing heterocyclics for the development of antidepressant compounds: An updated review. Journal of Molecular Structure. 1237, 130369. https://doi.org/10.1016/j.molstruc.2021.130369
  • Sugimoto, H., Iimura, Y., Yamanishi, Y., & Yamatsu, K. (1995). Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine hydrochloride and related compounds. Journal of Medicinal Chemistry, 38(24), 4821–4829. https://doi.org/10.1021/jm00024a009
  • Sugimoto, H., Tsuchiya, Y., Sugumi, H., Higurashi, K., Karibe, N., Iimura, Y., Sasaki, A., Araki, S., Yamanishi, Y., & Yamatsu, K. (1992). Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-(2-phthalimidoethyl)piperidine, and related derivatives. Journal of Medicinal Chemistry, 35(24), 4542–4548. https://doi.org/10.1021/jm00102a005
  • Sugimoto, H., Yamanishi, Y., Iimura, Y., & Kawakami, Y. (2000). Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors. Current Medicinal Chemistry, 7(3), 303–339. https://doi.org/10.2174/0929867003375191
  • Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., & Silman, I. (1991). Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science (New York, N.Y.), 253(5022), 872–879. https://doi.org/10.1126/science.1678899
  • Swerdlow, R. H. (2007). Pathogenesis of Alzheimer’s disease. Clin Interv Aging, 2(3), 347–359.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • van de Waterbeemd, H., Camenisch, G., Folkers, G., Chretien, J. R., & Raevsky, O. A. (1998). Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. Journal of Drug Targeting, 6(2), 151–165. https://doi.org/10.3109/10611869808997889
  • van Greunen, D. G., Cordier, W., Nell, M., van der Westhuyzen, C., Steenkamp, V., Panayides, J.-L., & Riley, D. L. (2017). Targeting Alzheimer’s disease by investigating previously unexplored chemical space surrounding the cholinesterase inhibitor donepezil. European Journal of Medicinal Chemistry, 127, 671–690. https://doi.org/10.1016/j.ejmech.2016.10.036
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Verma, A., Kumar Waiker, D., Bhardwaj, B., Saraf, P., & Shrivastava, S. K. (2022). The molecular mechanism, targets, and novel molecules in the treatment of Alzheimer’s disease. Bioorganic Chemistry, 119, 105562. https://doi.org/10.1016/j.bioorg.2021.105562
  • Vitaku, E., Smith, D. T., & Njardarson, J. T. (2014). Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. Journal of Medicinal Chemistry, 57(24), 10257–10274. https://doi.org/10.1021/jm501100b
  • Więckowska, A., Więckowski, K., Bajda, M., Brus, B., Sałat, K., Czerwińska, P., Gobec, S., Filipek, B., & MALawska, B. (2015). Synthesis of new N-benzylpiperidine derivatives as cholinesterase inhibitors with β-amyloid anti-aggregation properties and beneficial effects on memory in vivo. Bioorganic & Medicinal Chemistry, 23(10), 2445–2457. https://doi.org/10.1016/j.bmc.2015.03.051
  • Wilcock, G., Howe, I., Coles, H., Lilienfeld, S., Truyen, L., Zhu, Y., Bullock, R., & Kershaw, P. (2003). A long-term comparison of galantamine and Donepezil in the treatment of Alzheimer’s disease. Drugs & Aging, 20(10), 777–789. https://doi.org/10.2165/00002512-200320100-00006
  • World Health Organization: Global health estimates. (2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.