84
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Binding order of substrate and cofactor in sulfonamide monooxygenase during sulfa drug degradation: in silico studies

, , &
Received 26 Jun 2023, Accepted 10 Jan 2024, Published online: 23 Jan 2024

References

  • Akram, R., Hashmi, M. Z., & Nasim, W. (2017). Role of antibiotics in climate change (pp. 97–104). Springer. https://doi.org/10.1007/978-3-319-66260-2_6
  • Al-Karmalawy, A. A., Dahab, M. A., Metwaly, A. M., Elhady, S. S., Elkaeed, E. B., Eissa, I. H., & Darwish, K. M. (2021). Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Frontiers in Chemistry, 9, 661230. https://doi.org/10.3389/FCHEM.2021.661230/BIBTEX
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1-3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Chen, J., Yang, Y., Ke, Y., Chen, X., Jiang, X., Chen, C., & Xie, S. (2022). Sulfonamide-metabolizing microorganisms and mechanisms in antibiotic-contaminated wetland sediments revealed by stable isotope probing and metagenomics. Environment International, 165, 107332. https://doi.org/10.1016/J.ENVINT.2022.107332
  • Chen, Y., Kong, F., Li, Z., Ju, L. A., & Zhu, C. (2023). Force-regulated spontaneous conformational changes of integrins α5β1 and αVβ3. BioRxiv, 20230109523308. https://doi.org/10.1101/2023.01.09.523308
  • Cole, J. C., Murray, C. W., Nissink, J. W. M., Taylor, R. D., & Taylor, R. (2005). Comparing protein-ligand docking programs is difficult. Proteins, 60(3), 325–332. https://doi.org/10.1002/PROT.20497
  • Cycoń, M., Mrozik, A., & Piotrowska-Seget, Z. (2019). Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Frontiers in Microbiology, 10, 338. https://doi.org/10.3389/FMICB.2019.00338/BIBTEX
  • Deng, Y., Mao, Y., Li, B., Yang, C., & Zhang, T. (2016). Aerobic degradation of sulfadiazine by Arthrobacter spp.: Kinetics, pathways, and genomic characterization. Environmental Science & Technology, 50(17), 9566–9575. https://doi.org/10.1021/ACS.EST.6B02231
  • Dong, R., Peng, Z., Zhang, Y., & Yang, J. (2018). mTM-align: An algorithm for fast and accurate multiple protein structure alignment. Bioinformatics, 34(10), 1719–1725. https://doi.org/10.1093/BIOINFORMATICS/BTX828
  • Falconer, R. J. (2016). Applications of isothermal titration calorimetry – the research and technical developments from 2011 to 2015. Journal of Molecular Recognition, 29(10), 504–515. https://doi.org/10.1002/JMR.2550
  • Gao, Y., Li, X., & Guo, L. H. (2012). Development of a label-free competitive ligand binding assay with human serum albumin on a molecularly engineered surface plasmon resonance sensor chip. Analytical Methods, 4(11), 3718–3723. https://doi.org/10.1039/c2ay25780g
  • Girdhar, K., Dehury, B., Kumar Singh, M., Daniel, V. P., Choubey, A., Dogra, S., Kumar, S., & Mondal, P. (2019). Novel insights into the dynamics behavior of glucagon-like peptide-1 receptor with its small molecule agonists. Journal of Biomolecular Structure & Dynamics, 37(15), 3976–3986. https://doi.org/10.1080/07391102.2018.1532818
  • Gouet, P., Courcelle, E., Stuart, D. I., & Métoz, F. (1999). ESPript: Analysis of multiple sequence alignments in PostScript. Bioinformatics, 15(4), 305–308. https://doi.org/10.1093/BIOINFORMATICS/15.4.305
  • Harroun, S. G., Lauzon, D., Ebert, M. C. C. J. C., Desrosiers, A., Wang, X., & Vallée-Bélisle, A. (2021). Monitoring protein conformational changes using fluorescent nanoantennas. Nature Methods, 19(1), 71–80. 1 https://doi.org/10.1038/s41592-021-01355-5
  • Hong, X., Zhao, Y., Zhuang, R., Liu, J., Guo, G., Chen, J., & Yao, Y. (2020). Bioremediation of tetracycline antibiotics-contaminated soil by bioaugmentation. RSC Advances, 10(55), 33086–33102. https://doi.org/10.1039/D0RA04705H
  • Hu, J., Li, X., Liu, F., Fu, W., Lin, L., & Li, B. (2022). Comparison of chemical and biological degradation of sulfonamides: Solving the mystery of sulfonamide transformation. Journal of Hazardous Materials, 424(Pt D), 127661. https://doi.org/10.1016/J.JHAZMAT.2021.127661
  • Huang, J., & Mackerell, A. D. (2013). CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/JCC.23354
  • Hunter, S., Apweiler, R., Attwood, T. K., Bairoch, A., Bateman, A., Binns, D., Bork, P., Das, U., Daugherty, L., Duquenne, L., Finn, R. D., Gough, J., Haft, D., Hulo, N., Kahn, D., Kelly, E., Laugraud, A., Letunic, I., Lonsdale, D., … Yeats, C. (2009). InterPro: The integrative protein signature database. Nucleic Acids Research, 37, D211–D215. https://doi.org/10.1093/NAR/GKN785
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/JCC.20945
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1998). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kenoth, R., Balamurali M. M. & Kamlekar, R. K. (2022). Steady-state fluorescence spectroscopy as a tool to monitor protein/ligand interactions. In Harekrushna Sahoo (Ed.), Optical Spectroscopic and Microscopic Techniques -Analysis of Biological Molecules (pp. 35–54). Springer publication. https://doi.org/10.1007/978-981-16-4550-1_3
  • Kergoat, L., Besse-Hoggan, P., Leremboure, M., Beguet, J., Devers, M., Martin-Laurent, F., Masson, M., Morin, S., Roinat, A., Pesce, S., & Bonnineau, C. (2021). Environmental concentrations of sulfonamides can alter bacterial structure and induce diatom deformities in freshwater biofilm communities. Frontiers in Microbiology, 12, 643719. https://doi.org/10.3389/FMICB.2021.643719
  • Kim, D. W., Thawng, C. N., Lee, K., Wellington, E. M. H., & Cha, C. J. (2019). A novel sulfonamide resistance mechanism by two-component flavin-dependent monooxygenase system in sulfonamide-degrading actinobacteria. Environment International, 127, 206–215. https://doi.org/10.1016/J.ENVINT.2019.03.046
  • Koch, N., Islam, N. F., Sonowal, S., Prasad, R., & Sarma, H. (2021). Environmental antibiotics and resistance genes as emerging contaminants: Methods of detection and bioremediation. Current Research in Microbial Sciences, 2, 100027. https://doi.org/10.1016/J.CRMICR.2021.100027
  • Kumar, L., & Bharadvaja, N. (2019). Enzymatic bioremediation: A smart tool to fight environmental pollutants. In Pankaj Bhatt (Ed.), Smart Bioremediation Technologies Microbial Enzymes. Academic Press (pp. 99–118). https://doi.org/10.1016/B978-0-12-818307-6.00006-8
  • Kurkcuoglu, Z., Koukos, P., Citro, I., Trellet, N., Rodrigues, M. E., Moreira, J. P. G. L. M., Roel-Touris, I. S., Melquiond, J., Geng, A. S. J., Schaarschmidt, C., Li, J., Xue, C., Vangone, A., & Bonvin, A. M. J. J. (2018). Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R Grand Challenge 2. Journal of Computer-Aided Molecular Design, 32(1), 175–185. https://doi.org/10.1007/s10822-017-0049-y
  • Kwiatkowski, P., Kurzawski, M., Kukula-Koch, W., Pruss, A., Sienkiewicz, M., Płaziński, W., Dołęgowska, B., & Wojciechowska-Koszko, I. (2023). Staphyloxanthin inhibitory potential of trans-anethole: A preliminary study. Biomedicine & Pharmacotherapy, 158, 114153. https://doi.org/10.1016/J.BIOPHA.2022.114153
  • Larit, F., Elokely, K. M., Nael, M. A., Benyahia, S., León, F., Cutler, S. J., & Ghoneim, M. M. (2021). Proposed mechanism for the antitrypanosomal activity of quercetin and myricetin isolated from Hypericum afrum Lam.: Phytochemistry, in vitro testing and modeling studies. Molecules 26(4), 1009. https://doi.org/10.3390/MOLECULES26041009
  • Laskowski, R. A., Watson, J. D., & Thornton, J. M. (2005). ProFunc: A server for predicting protein function from 3D structure. Nucleic Acids Research, 33, W89–W93. https://doi.org/10.1093/NAR/GKI414
  • Lemkul, J. (2019). From proteins to perturbed hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0]. Living Journal of Computational Molecular Science, 1(1), 5068. https://doi.org/10.33011/livecoms.1.1.5068
  • Lemkul, J. A., & Bevan, D. R. (2010). Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics. The Journal of Physical Chemistry B, 114(4), 1652–1660. https://doi.org/10.1021/JP9110794/SUPPL_FILE/JP9110794_SI_001.PDF
  • Lemkul, J. A., & Bevan, D. R. (2013). Aggregation of Alzheimer’s amyloid β-peptide in biological membranes: A molecular dynamics study. Biochemistry, 52(29), 4971–4980. https://doi.org/10.1021/BI400562X
  • Leskovac, V. (2003). Kinetic analysis of bisubstrate mechanisms. In Leskovac, V. (Ed.), Comprehensive enzyme kinetics (pp. 171–189). Springer Publications. Comprehensive enzyme kinetics
  • Lu, C., Lin, Y., & Yeh, S. R. (2010). Spectroscopic studies of ligand and substrate binding to human indoleamine 2,3-dioxygenase. Biochemistry, 49(24), 5028–5034. https://doi.org/10.1021/BI1005078/ASSET/IMAGES/MEDIUM/BI-2010-005078_0009.GIF
  • Magnano San Lio, R., Favara, G., Maugeri, A., Barchitta, M., & Agodi, A. (2023). How antimicrobial resistance is linked to climate change: An overview of two intertwined global challenges. International Journal of Environmental Research and Public Health, 20(3), 1681. https://doi.org/10.3390/IJERPH20031681
  • Martínez-Carballo, E., González-Barreiro, C., Scharf, S., & Gans, O. (2007). Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution, 148(2), 570–579. https://doi.org/10.1016/J.ENVPOL.2006.11.035
  • Meek, R. W., Vyas, H., & Piddock, L. J. V. (2015). Nonmedical uses of antibiotics: Time to restrict their use? PLOS Biology, 13(10), e1002266. https://doi.org/10.1371/JOURNAL.PBIO.1002266
  • Milligan, J. R., Aguilera, J. A., Ly, A., Tran, N. Q., Hoang, O., & Ward, J. F. (2003). Repair of oxidative DNA damage by amino acids. Nucleic Acids Research, 31(21), 6258–6263. https://doi.org/10.1093/NAR/GKG816
  • Moldogazieva, N. T., Ostroverkhova, D. S., Kuzmich, N. N., Kadochnikov, V. V., Terentiev, A. A., & Porozov, Y. B. (2020). Elucidating binding sites and affinities of ERα agonists and antagonists to human alpha-fetoprotein by in silico modeling and point mutagenesis. International Journal of Molecular Sciences, 21(3), 893. https://doi.org/10.3390/IJMS21030893
  • O’Connell, N. (2021). Protein ligand interactions using surface plasmon resonance. Methods in Molecular Biology, 2365, 3–20. https://doi.org/10.1007/978-1-0716-1665-9_1
  • Ovung, A., & Bhattacharyya, J. (2021). Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophysical Reviews, 13(2), 259–272. https://doi.org/10.1007/s12551-021-00795-9
  • Paketurytė, V., Zubrienė, A., Ladbury, J. E., & Matulis, D. (2019). Intrinsic thermodynamics of protein-ligand binding by isothermal titration calorimetry as aid to drug design. Methods in Molecular Biology, 1964, 61–74. https://doi.org/10.1007/978-1-4939-9179-2_5
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/JCC.20084
  • Pires, D. E. V., & Ascher, D. B. (2016). CSM-lig: A web server for assessing and comparing protein-small molecule affinities. Nucleic Acids Research, 44(W1), W557–561. https://doi.org/10.1093/nar/gkw390
  • Pruden, A., Joakim Larsson, D. G., Amézquita, A., Collignon, P., Brandt, K. K., Graham, D. W., Lazorchak, J. M., Suzuki, S., Silley, P., Snape, J. R., Topp, E., Zhang, T., & Zhu, Y. G. (2013). Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives, 121(8), 878–885. https://doi.org/10.1289/EHP.1206446
  • Puls, K., & Wolber, G. (2023). Solving an old puzzle: Elucidation and evaluation of the binding mode of Salvinorin A at the kappa opioid receptor. Molecules, 28(2), 718. https://doi.org/10.3390/MOLECULES28020718
  • Qi, G., Vrettas, M. D., Biancaniello, C., Sanz-Hernandez, M., Cafolla, C. T., Morgan, J. W. R., Wang, Y., De Simone, A., & Wales, D. J. (2022). Enhancing biomolecular simulations with hybrid potentials incorporating NMR data. Journal of Chemical Theory and Computation, 18(12), 7733–7750. https://doi.org/10.1021/ACS.JCTC.2C00657
  • Qiang, Z., & Adams, C. (2004). Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Research, 38(12), 2874–2890. https://doi.org/10.1016/J.WATRES.2004.03.017
  • Rashid, H. U., Ahmad, N., Abdalla, M., Khan, K., Martines, M. A. U., & Shabana, S. (2022). Molecular docking and dynamic simulations of Cefixime, Etoposide and Nebrodenside A against the pathogenic proteins of SARS-CoV-2. Journal of Molecular Structure, 1247, 131296. https://doi.org/10.1016/J.MOLSTRUC.2021.131296
  • Ray, D., Quijano, R. N., & Andricioaei, I. (2022). Point mutations in SARS-CoV-2 variants induce long-range dynamical perturbations in neutralizing antibodies. Chemical Science, 13(24), 7224–7239. https://doi.org/10.1039/D2SC00534D
  • Reis, A. C., Čvančarová, M., Liu, Y., Lenz, M., Hettich, T., Kolvenbach, B. A., Corvini, P. F. X., & Nunes, O. C. (2018). Biodegradation of sulfamethoxazole by a bacterial consortium of Achromobacter denitrificans PR1 and Leucobacter sp. GP. Applied Microbiology and Biotechnology, 102(23), 10299–10314. https://doi.org/10.1007/S00253-018-9411-9/METRICS
  • Ricken, B., Fellmann, O., Kohler, H. P. E., Schäffer, A., Corvini, P. F. X., & Kolvenbach, B. A. (2015). Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 – elucidating the downstream pathway. New Biotechnology, 32(6), 710–715. https://doi.org/10.1016/J.NBT.2015.03.005
  • Ricken, B., Kolvenbach, B. A., Bergesch, C., Benndorf, D., Kroll, K., Strnad, H., Vlček, Č., Adaixo, R., Hammes, F., Shahgaldian, P., Schäffer, A., Kohler, H. P. E., & Corvini, P. F. X. (2017). FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics. Scientific Reports, 7(1), 15783. https://doi.org/10.1038/s41598-017-16132-8
  • Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738. https://doi.org/10.1038/NPROT.2010.5
  • Scheurer, M., Rodenkirch, P., Siggel, M., Bernardi, R. C., Schulten, K., Tajkhorshid, E., & Rudack, T. (2018). PyContact: Rapid, customizable, and visual analysis of noncovalent interactions in MD simulations. Biophysical Journal, 114(3), 577–583. https://doi.org/10.1016/J.BPJ.2017.12.003
  • Sherman, W., Day, T., Jacobson, M. P., Friesner, R. A., & Farid, R. (2006). Novel procedure for modeling ligand/receptor induced fit effects. Journal of Medicinal Chemistry, 49(2), 534–553. https://doi.org/10.1021/JM050540C
  • Shivanika, C., Deepak Kumar, S., Ragunathan, V., Tiwari, P., Sumitha, A., & Brindha Devi, P. (2020). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure & Dynamics, 40(2), 1. https://doi.org/10.1080/07391102.2020.1815584
  • Sievers, F., & Higgins, D. G. (2014). Clustal omega, accurate alignment of very large numbers of sequences. Methods in Molecular Biology, 1079, 105–116. https://doi.org/10.1007/978-1-62703-646-7_6/COVER
  • Song, Y., Dimaio, F., Wang, R. Y. R., Kim, D., Miles, C., Brunette, T., Thompson, J., & Baker, D. (2013). High-resolution comparative modeling with RosettaCM. Structure, 21(10), 1735–1742. https://doi.org/10.1016/J.STR.2013.08.005
  • Tačić, A., Nikolić, V., Nikolić, L., & Savić, I. (2017). Antimicrobial sulfonamide drugs. Advanced Technologies, 6(1), 58–71. https://doi.org/10.5937/SAVTEH1701058T
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/JCC.21334
  • Vangone, A., Schaarschmidt, J., Koukos, P., Geng, C., Citro, N., Trellet, M. E., Xue, L. C., & Bonvin, A. M. J. J. (2019). Large-scale prediction of binding affinity in protein–small ligand complexes: The PRODIGY-LIG web server. Bioinformatics, 35(9), 1585–1587. https://doi.org/10.1093/BIOINFORMATICS/BTY816
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/NAR/GKY427
  • Wu, X., Wang, N., Liang, J., Wang, B., Jin, Y., Liu, B., & Yang, Y. (2023). Is the triggering of PD-L1 dimerization a potential mechanism for food-derived small molecules in cancer immunotherapy? A study by molecular dynamics. International Journal of Molecular Sciences, 24(2), 1413. https://doi.org/10.3390/IJMS24021413/S1
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8. https://doi.org/10.1038/NMETH.3213
  • Yang, X., Wang, X., Xu, Z., Wu, C., Zhou, Y., Wang, Y., Lin, G., Li, K., Wu, M., Xia, A., Liu, J., Cheng, L., Zou, J., Yan, W., Shao, Z., & Yang, S. (2022). Molecular mechanism of allosteric modulation for the cannabinoid receptor CB1. Nature Chemical Biology, 18(8), 831–840. https://doi.org/10.1038/S41589-022-01038-Y
  • Zhan, X., Carpenter, R. A., & Ellis, H. R. (2008). Catalytic importance of the substrate binding order for the FMNH2-dependent alkanesulfonate monooxygenase enzyme. Biochemistry, 47(7), 2221–2230. https://doi.org/10.1021/BI701853W
  • Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(1), 40. https://doi.org/10.1186/1471-2105-9-40/FIGURES/4
  • Zhang, Y., & Skolnick, J. (2004). Scoring function for automated assessment of protein structure template quality. Proteins, 57(4), 702–710. https://doi.org/10.1002/PROT.20264
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/JCC.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.